Use of anions to allow translational isomerism of a [2]rotaxane.

We report a molecular [2]rotaxane which comprises a molecular cage and a dumbbell-shaped component, in which translational isomerism can be performed reversibly through an in situ anion exchange process, that is, sequential addition of Bu4NCl/AgPF6 reagent pairs. The [2]rotaxane incorporates two pyridinium and two dialkylammonium centers and functions as a triply operable molecular switch, which can be controlled through altering the polarity of the solvent, adding acidic and basic reagents (TFA/Et3N), and the varying the nature of the counteranions (Cl- vs PF6-).

[1]  J. Sauvage,et al.  Efficient synthesis of a labile copper(I)-rotaxane complex using click chemistry , 2006 .

[2]  Kuang Cheng,et al.  Reading the operation of an acid/base-controllable molecular switch by naked eye. , 2006, Chemical communications.

[3]  Chien‐Chen Lai,et al.  Dual-action acid/base- and base/acid-controllable molecular switch. , 2006, Organic letters.

[4]  Philip A. Gale,et al.  Structural and molecular recognition studies with acyclic anion receptors. , 2006, Accounts of chemical research.

[5]  Yi‐Hung Liu,et al.  Precise facial control in threading guests into a molecular cage and the formation of a turtlelike supramolecular complex. , 2006, Angewandte Chemie.

[6]  M. Licchelli,et al.  What anions do to N-H-containing receptors. , 2006, Accounts of chemical research.

[7]  David J. Williams,et al.  Pseudorotaxanes and Rotaxanes Formed by Viologen Derivatives , 2006 .

[8]  Sarah J. Vella,et al.  A mechanical "flip-switch". Interconversion between co-conformations of a [2]rotaxane with a single recognition site. , 2006, Chemical communications.

[9]  Juyoung Yoon,et al.  Imidazolium receptors for the recognition of anions. , 2006, Chemical Society reviews.

[10]  Francesco Zerbetto,et al.  Patterning through controlled submolecular motion: rotaxane-based switches and logic gates that function in solution and polymer films. , 2005, Angewandte Chemie.

[11]  Vincenzo Balzani,et al.  Controllable donor-acceptor neutral [2]rotaxanes. , 2004, Chemistry.

[12]  J Fraser Stoddart,et al.  Counterion-induced translational isomerism in a bistable [2]rotaxane. , 2004, Organic letters.

[13]  Christopher A. Hunter Zwischenmolekulare Wechselwirkungen in Lösung: eine vereinfachende Quantifizierungsmethode , 2004 .

[14]  C. Hunter,et al.  Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. , 2004, Angewandte Chemie.

[15]  Jeremy K M Sanders,et al.  Lithium-templated synthesis of a donor-acceptor pseudorotaxane and catenane. , 2004, Angewandte Chemie.

[16]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[17]  David A Leigh,et al.  Shuttling through anion recognition. , 2004, Angewandte Chemie.

[18]  K. Liao,et al.  Substituent effects in the binding of bis(4-fluorobenzyl)ammonium ions by dianilino[24]crown-8 , 2004 .

[19]  Félix Sancenón,et al.  Fluorogenic and chromogenic chemosensors and reagents for anions. , 2003, Chemical reviews.

[20]  H. Gibson,et al.  Ion pairing and host-guest complexation in low dielectric constant solvents. , 2003, Journal of the American Chemical Society.

[21]  D. Powell,et al.  Ammonium based anion receptors , 2003 .

[22]  Philip A. Gale,et al.  Pyrrolic and polypyrrolic anion binding agents , 2003 .

[23]  M. W. Hosseini Molecular tectonics: from molecular recognition of anions to molecular networks , 2003 .

[24]  P. Beer,et al.  Transition metal and organometallic anion complexation agents , 2003 .

[25]  A. Bosman,et al.  Crowned dendrimers: pH-responsive pseudorotaxane formation. , 2003, The Journal of organic chemistry.

[26]  Maurizio Prato,et al.  Hydrogen bond-assembled fullerene molecular shuttle. , 2003, Organic letters.

[27]  J Fraser Stoddart,et al.  An acid-base switchable [2]rotaxane. , 2002, The Journal of organic chemistry.

[28]  C. Dietrich-Buchecker,et al.  Shuttles and muscles: linear molecular machines based on transition metals. , 2001, Accounts of chemical research.

[29]  Philip A. Gale,et al.  Erkennung und Nachweis von Anionen: gegenwärtiger Stand und Perspektiven , 2001 .

[30]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[31]  E. Anslyn,et al.  Anion recognition: synthetic receptors for anions and their application in sensors. , 1999, Current opinion in chemical biology.

[32]  P. Beer Transition-Metal Receptor Systems for the Selective Recognition and Sensing of Anionic Guest Species , 1998 .

[33]  Marco Montalti,et al.  A supramolecular assembly controlled by anions: threading and unthreading of a pseudorotaxane , 1998 .

[34]  David A. Leigh,et al.  Peptide-Based Molecular Shuttles , 1997 .

[35]  F. Schmidtchen,et al.  Artificial Organic Host Molecules for Anions. , 1997, Chemical reviews.

[36]  David J. Williams,et al.  Dialkylammonium Ion/Crown Ether Complexes: The Forerunners of a New Family of Interlocked Molecules , 1995 .

[37]  David J. Williams,et al.  DIALKYLAMMONIUM-IONEN/KRONENETHER-KOMPLEXE : VORLAUFER EINER NEUEN FAMILIE MECHANISCH VERKNUPFTER MOLEKULE , 1995 .

[38]  H. Simmons,et al.  Macrobicyclic amines. III. Encapsulation of halide ions by in,in-1,(k + 2)-diazabicyclo[k.l.m.]alkane ammonium ions , 1968 .