Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer

Y. Kamatani | Y. Okada | T. Kawaguchi | K. Kinoshita | K. Matsuda | C. Haiman | S. Nishizuka | L. Le Marchand | A. Goto | H. Eguchi | H. Ishii | Y. Doki | M. Horikoshi | M. Kubo | Teruhiko Yoshida | K. Matsuo | Hidemi Ito | David Bogumil | M. Hirata | F. Matsuda | H. Sakamoto | S. Tsugane | L. Amundadottir | H. Risch | Herbert Yu | N. Sasahira | K. Wakai | I. Imoto | Y. Hayashi | Y. Adachi | T. Kadowaki | T. Yamauchi | T. Takezaki | Sadao Suzuki | R. Okada | K. Kuriki | H. Mikami | N. Sawada | A. Kadota | A. Shimizu | M. Nakatochi | M. Morimoto | K. Ishigaki | M. Akiyama | Y. Murakami | K. Hara | F. Katsuoka | M. Mori | Ken Suzuki | K. Tanno | T. Yamaji | M. Iwasaki | V. Setiawan | T. Okusaka | N. Fuse | S. Kamiya | K. Shimada | Y. Shimizu | Y. Hosono | H. Ebi | F. Kinoshita | M. Ueno | S. Kikuchi | T. Osaki | Yoshiyuki Watanabe | N. Egawa | S. Ohkawa | Satoshi Kobayashi | H. Ishii | Yingsong Lin | Meiko Takahashi | Haruhisa Nakao | Takashi Sasaki | M. Matsuyama | M. Ozaka | Chaochen Wang | T. Kohmoto | T. Miyamoto | Yumiko Kobayashi | M. Okuda | Taito Fukushima | Akihito Inoko | Jun Zhong | Issei Imoto | S. Kuruma | Y. Kasugai | Tomohiro Kohmoto | Masaki Mori | Yoshiyuki Watanabe | Kengo Kinoshita | Ken Suzuki | C. Haiman | Masumi Okuda | M. Kubo | Takashi Sasaki | Hiromi Sakamoto | Manabu Morimoto | K. Matsuo | Shigeru Kamiya | Atsushi Goto | Teruhiko Yoshida | Koichi Matsuda | Fumihiko Matsuda | L. Le Marchand | Kazuaki Shimada | Satoshi S. Nishizuka | Takashi Kadowaki | K. Wakai | Nobuo Fuse | Yuko Hayashi | Hiromichi Ebi | Masato Ozaka | V. W. Setiawan | Naoki Sasahira | Hiroshi Ishii | Yasuyuki Hosono | Yumiko Kobayashi | Satoshi Kobayashi | Shinichi Ohkawa | Naoto Egawa | Mitsuru Mori | Haruhisa Nakao | Yasushi Adachi | Chaochen Wang | Kazuo Hara | Yasuhiro Shimizu | Yoshinori Murakami | Sadao Suzuki | Herbert Yu | Hideshi Ishii | Masaki Mori

[1]  Kornel Labun,et al.  CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing , 2019, Nucleic Acids Res..

[2]  M. Kanai,et al.  Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population , 2019, Nature Genetics.

[3]  H. Risch Diabetes and Pancreatic Cancer: Both Cause and Effect. , 2018, Journal of the National Cancer Institute.

[4]  Stephanie A. Bien,et al.  Novel Common Genetic Susceptibility Loci for Colorectal Cancer , 2018, Journal of the National Cancer Institute.

[5]  Takahisa Kawaguchi,et al.  Prediction model for pancreatic cancer risk in the general Japanese population , 2018, PloS one.

[6]  B. Neale,et al.  Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases , 2018, Nature Genetics.

[7]  M. Kanai,et al.  Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.

[8]  Peter Kraft,et al.  Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer , 2018, Nature Communications.

[9]  M. Kanai,et al.  Genome-wide association study identifies 112 new loci for body mass index in the Japanese population , 2017, Nature Genetics.

[10]  Steven J. M. Jones,et al.  Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. , 2017, Cancer cell.

[11]  C. Haiman,et al.  Genome-Wide Association Studies of Cancer in Diverse Populations , 2017, Cancer Epidemiology, Biomarkers & Prevention.

[12]  P. Brennan,et al.  The Role of Obesity, Type 2 Diabetes, and Metabolic Factors in Pancreatic Cancer: A Mendelian Randomization Study , 2017, Journal of the National Cancer Institute.

[13]  Olena O Yavorska,et al.  MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data , 2017, International journal of epidemiology.

[14]  Huamin Wang,et al.  RNA sequencing analyses reveal novel differentially expressed genes and pathways in pancreatic cancer , 2017, Oncotarget.

[15]  Y. Kamatani,et al.  Overview of the BioBank Japan Project: Study design and profile , 2017, Journal of epidemiology.

[16]  S. Thompson,et al.  Bias due to participant overlap in two‐sample Mendelian randomization , 2016, Genetic epidemiology.

[17]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[18]  Shane A. McCarthy,et al.  Reference-based phasing using the Haplotype Reference Consortium panel , 2016, Nature Genetics.

[19]  L. Amundadottir Pancreatic Cancer Genetics , 2016, International journal of biological sciences.

[20]  M. Martín-Pérez,et al.  New-onset type 2 diabetes, elevated HbA1c, anti-diabetic medications, and risk of pancreatic cancer , 2015, British Journal of Cancer.

[21]  Raffaele Pezzilli,et al.  Common variation at 2 p 13 . 3 , 3 q 29 , 7 p 13 and 17 q 25 . 1 associated with susceptibility to pancreatic cancer , 2022 .

[22]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[23]  Alison M Dunning,et al.  From candidate gene studies to GWAS and post-GWAS analyses in breast cancer. , 2015, Current opinion in genetics & development.

[24]  D. Noh,et al.  Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1 , 2014, Nature Genetics.

[25]  Yan Guo,et al.  Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk , 2014, Nature Genetics.

[26]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[27]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[28]  O. Delaneau,et al.  Supplementary Information for ‘ Improved whole chromosome phasing for disease and population genetic studies ’ , 2012 .

[29]  J. Hoheisel,et al.  Lack of Replication of Seven Pancreatic Cancer Susceptibility Loci Identified in Two Asian Populations , 2012, Cancer Epidemiology, Biomarkers & Prevention.

[30]  Qian Wang,et al.  GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data , 2012, Bioinform..

[31]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[32]  Geoffrey S. Tobias,et al.  Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. , 2012, Carcinogenesis.

[33]  Gary K. Chen,et al.  Meta-analysis identifies common variants associated with body mass index in East Asians , 2012, Nature Genetics.

[34]  Donghui Li Diabetes and pancreatic cancer , 2012, Molecular carcinogenesis.

[35]  Wen Tan,et al.  Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations , 2011, Nature Genetics.

[36]  E. Riboli,et al.  Diabetes mellitus, glycated haemoglobin and C-peptide levels in relation to pancreatic cancer risk: a study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort , 2011, Diabetologia.

[37]  V. Karantza,et al.  Keratins in health and cancer: more than mere epithelial cell markers , 2011, Oncogene.

[38]  K. Hase,et al.  Glycoprotein 2 (GP2) , 2010, Gut microbes.

[39]  Yusuke Nakamura,et al.  Genome-Wide Association Study of Pancreatic Cancer in Japanese Population , 2010, PloS one.

[40]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[41]  Geoffrey S. Tobias,et al.  Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer , 2009, Nature Genetics.

[42]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[43]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Omary,et al.  Keratin 8 mutations in patients with cryptogenic liver disease. , 2001, The New England journal of medicine.

[45]  M. Vidal,et al.  Exocrine pancreatic disorders in transsgenic mice expressing human keratin 8. , 1999, The Journal of clinical investigation.