Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer
暂无分享,去创建一个
Y. Kamatani | Y. Okada | T. Kawaguchi | K. Kinoshita | K. Matsuda | C. Haiman | S. Nishizuka | L. Le Marchand | A. Goto | H. Eguchi | H. Ishii | Y. Doki | M. Horikoshi | M. Kubo | Teruhiko Yoshida | K. Matsuo | Hidemi Ito | David Bogumil | M. Hirata | F. Matsuda | H. Sakamoto | S. Tsugane | L. Amundadottir | H. Risch | Herbert Yu | N. Sasahira | K. Wakai | I. Imoto | Y. Hayashi | Y. Adachi | T. Kadowaki | T. Yamauchi | T. Takezaki | Sadao Suzuki | R. Okada | K. Kuriki | H. Mikami | N. Sawada | A. Kadota | A. Shimizu | M. Nakatochi | M. Morimoto | K. Ishigaki | M. Akiyama | Y. Murakami | K. Hara | F. Katsuoka | M. Mori | Ken Suzuki | K. Tanno | T. Yamaji | M. Iwasaki | V. Setiawan | T. Okusaka | N. Fuse | S. Kamiya | K. Shimada | Y. Shimizu | Y. Hosono | H. Ebi | F. Kinoshita | M. Ueno | S. Kikuchi | T. Osaki | Yoshiyuki Watanabe | N. Egawa | S. Ohkawa | Satoshi Kobayashi | H. Ishii | Yingsong Lin | Meiko Takahashi | Haruhisa Nakao | Takashi Sasaki | M. Matsuyama | M. Ozaka | Chaochen Wang | T. Kohmoto | T. Miyamoto | Yumiko Kobayashi | M. Okuda | Taito Fukushima | Akihito Inoko | Jun Zhong | Issei Imoto | S. Kuruma | Y. Kasugai | Tomohiro Kohmoto | Masaki Mori | Yoshiyuki Watanabe | Kengo Kinoshita | Ken Suzuki | C. Haiman | Masumi Okuda | M. Kubo | Takashi Sasaki | Hiromi Sakamoto | Manabu Morimoto | K. Matsuo | Shigeru Kamiya | Atsushi Goto | Teruhiko Yoshida | Koichi Matsuda | Fumihiko Matsuda | L. Le Marchand | Kazuaki Shimada | Satoshi S. Nishizuka | Takashi Kadowaki | K. Wakai | Nobuo Fuse | Yuko Hayashi | Hiromichi Ebi | Masato Ozaka | V. W. Setiawan | Naoki Sasahira | Hiroshi Ishii | Yasuyuki Hosono | Yumiko Kobayashi | Satoshi Kobayashi | Shinichi Ohkawa | Naoto Egawa | Mitsuru Mori | Haruhisa Nakao | Yasushi Adachi | Chaochen Wang | Kazuo Hara | Yasuhiro Shimizu | Yoshinori Murakami | Sadao Suzuki | Herbert Yu | Hideshi Ishii | Masaki Mori
[1] Kornel Labun,et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing , 2019, Nucleic Acids Res..
[2] M. Kanai,et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population , 2019, Nature Genetics.
[3] H. Risch. Diabetes and Pancreatic Cancer: Both Cause and Effect. , 2018, Journal of the National Cancer Institute.
[4] Stephanie A. Bien,et al. Novel Common Genetic Susceptibility Loci for Colorectal Cancer , 2018, Journal of the National Cancer Institute.
[5] Takahisa Kawaguchi,et al. Prediction model for pancreatic cancer risk in the general Japanese population , 2018, PloS one.
[6] B. Neale,et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases , 2018, Nature Genetics.
[7] M. Kanai,et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.
[8] Peter Kraft,et al. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer , 2018, Nature Communications.
[9] M. Kanai,et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population , 2017, Nature Genetics.
[10] Steven J. M. Jones,et al. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. , 2017, Cancer cell.
[11] C. Haiman,et al. Genome-Wide Association Studies of Cancer in Diverse Populations , 2017, Cancer Epidemiology, Biomarkers & Prevention.
[12] P. Brennan,et al. The Role of Obesity, Type 2 Diabetes, and Metabolic Factors in Pancreatic Cancer: A Mendelian Randomization Study , 2017, Journal of the National Cancer Institute.
[13] Olena O Yavorska,et al. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data , 2017, International journal of epidemiology.
[14] Huamin Wang,et al. RNA sequencing analyses reveal novel differentially expressed genes and pathways in pancreatic cancer , 2017, Oncotarget.
[15] Y. Kamatani,et al. Overview of the BioBank Japan Project: Study design and profile , 2017, Journal of epidemiology.
[16] S. Thompson,et al. Bias due to participant overlap in two‐sample Mendelian randomization , 2016, Genetic epidemiology.
[17] Alan M. Kwong,et al. Next-generation genotype imputation service and methods , 2016, Nature Genetics.
[18] Shane A. McCarthy,et al. Reference-based phasing using the Haplotype Reference Consortium panel , 2016, Nature Genetics.
[19] L. Amundadottir. Pancreatic Cancer Genetics , 2016, International journal of biological sciences.
[20] M. Martín-Pérez,et al. New-onset type 2 diabetes, elevated HbA1c, anti-diabetic medications, and risk of pancreatic cancer , 2015, British Journal of Cancer.
[21] Raffaele Pezzilli,et al. Common variation at 2 p 13 . 3 , 3 q 29 , 7 p 13 and 17 q 25 . 1 associated with susceptibility to pancreatic cancer , 2022 .
[22] Joris M. Mooij,et al. MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..
[23] Alison M Dunning,et al. From candidate gene studies to GWAS and post-GWAS analyses in breast cancer. , 2015, Current opinion in genetics & development.
[24] D. Noh,et al. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1 , 2014, Nature Genetics.
[25] Yan Guo,et al. Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk , 2014, Nature Genetics.
[26] David A. Scott,et al. Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.
[27] Ellen T. Gelfand,et al. The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.
[28] O. Delaneau,et al. Supplementary Information for ‘ Improved whole chromosome phasing for disease and population genetic studies ’ , 2012 .
[29] J. Hoheisel,et al. Lack of Replication of Seven Pancreatic Cancer Susceptibility Loci Identified in Two Asian Populations , 2012, Cancer Epidemiology, Biomarkers & Prevention.
[30] Qian Wang,et al. GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data , 2012, Bioinform..
[31] Eurie L. Hong,et al. Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.
[32] Geoffrey S. Tobias,et al. Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. , 2012, Carcinogenesis.
[33] Gary K. Chen,et al. Meta-analysis identifies common variants associated with body mass index in East Asians , 2012, Nature Genetics.
[34] Donghui Li. Diabetes and pancreatic cancer , 2012, Molecular carcinogenesis.
[35] Wen Tan,et al. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations , 2011, Nature Genetics.
[36] E. Riboli,et al. Diabetes mellitus, glycated haemoglobin and C-peptide levels in relation to pancreatic cancer risk: a study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort , 2011, Diabetologia.
[37] V. Karantza,et al. Keratins in health and cancer: more than mere epithelial cell markers , 2011, Oncogene.
[38] K. Hase,et al. Glycoprotein 2 (GP2) , 2010, Gut microbes.
[39] Yusuke Nakamura,et al. Genome-Wide Association Study of Pancreatic Cancer in Japanese Population , 2010, PloS one.
[40] H. Hakonarson,et al. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.
[41] Geoffrey S. Tobias,et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer , 2009, Nature Genetics.
[42] P. Donnelly,et al. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.
[43] Pablo Tamayo,et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[44] M. Omary,et al. Keratin 8 mutations in patients with cryptogenic liver disease. , 2001, The New England journal of medicine.
[45] M. Vidal,et al. Exocrine pancreatic disorders in transsgenic mice expressing human keratin 8. , 1999, The Journal of clinical investigation.