GEFCom2012: Electric load forecasting and backcasting with semi-parametric models

[1]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[2]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[3]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[4]  S. Wood Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models , 2004 .

[5]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[6]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[7]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[8]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[9]  Yannig Goude,et al.  Adaptive Learning of Smoothing Functions: Application to Electricity Load Forecasting , 2012, NIPS.

[10]  Rob J Hyndman,et al.  Short-Term Load Forecasting Based on a Semi-Parametric Additive Model , 2012, IEEE Transactions on Power Systems.

[11]  Anestis Antoniadis,et al.  Clustering Functional Data using Wavelets , 2010, Int. J. Wavelets Multiresolution Inf. Process..

[12]  Yannig Goude,et al.  Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach , 2013, 1611.08632.

[13]  Yannig Goude,et al.  Local Short and Middle Term Electricity Load Forecasting With Semi-Parametric Additive Models , 2014, IEEE Transactions on Smart Grid.