Mitochondrial-dependent Autoimmunity in Membranous Nephropathy of IgG4-related Disease

[1]  T. Foster,et al.  IgG4-Related Disease , 2018, Definitions.

[2]  J. Klein,et al.  Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. , 2014, The New England journal of medicine.

[3]  D. Salant,et al.  Membranous nephropathy: from models to man. , 2014, The Journal of clinical investigation.

[4]  H. Vrolijk,et al.  MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4 , 2013, Proceedings of the National Academy of Sciences.

[5]  N. Perico,et al.  Angiotensin II contributes to diabetic renal dysfunction in rodents and humans via Notch1/Snail pathway. , 2013, The American journal of pathology.

[6]  C. Haigh,et al.  Cytosolic caspases mediate mislocalised SOD2 depletion in an in vitro model of chronic prion infection , 2013, Disease Models & Mechanisms.

[7]  N. Takahashi,et al.  Membranous glomerulonephritis is a manifestation of IgG4-related disease. , 2013, Kidney international.

[8]  M. Rao,et al.  Active Remodeling of Cortical Actin Regulates Spatiotemporal Organization of Cell Surface Molecules , 2012, Cell.

[9]  J. Verschuuren,et al.  Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. , 2012, Brain : a journal of neurology.

[10]  G. Remuzzi,et al.  Membranous nephropathy associated with IgG4-related disease. , 2011, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[11]  J. Casey,et al.  An intramolecular transport metabolon: fusion of carbonic anhydrase II to the COOH terminus of the Cl(-)/HCO(3)(-)exchanger, AE1. , 2011, American journal of physiology. Cell physiology.

[12]  A. Pasternack,et al.  Novel carbonic anhydrase autoantibodies and renal manifestations in patients with primary Sjogren's syndrome. , 2011, Rheumatology.

[13]  M. Wagner,et al.  Motor Protein Myo1c Is a Podocyte Protein That Facilitates the Transport of Slit Diaphragm Protein Neph1 to the Podocyte Membrane , 2011, Molecular and Cellular Biology.

[14]  I. Narita,et al.  Clinicopathological characteristics of patients with IgG4-related tubulointerstitial nephritis. , 2010, Kidney international.

[15]  M. Prunotto,et al.  Autoimmunity in membranous nephropathy targets aldose reductase and SOD2. , 2010, Journal of the American Society of Nephrology : JASN.

[16]  W. Boron Evaluating the role of carbonic anhydrases in the transport of HCO3--related species. , 2010, Biochimica et biophysica acta.

[17]  G. Heusch,et al.  Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection , 2010, Basic Research in Cardiology.

[18]  David M. Beck,et al.  M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. , 2009, The New England journal of medicine.

[19]  H. Pavenstädt,et al.  Mechanisms of angiotensin II signaling on cytoskeleton of podocytes , 2008, Journal of Molecular Medicine.

[20]  G. Schwartz,et al.  The role of carbonic anhydrases in renal physiology. , 2007, Kidney international.

[21]  J. Sastre,et al.  Antibodies to carbonic anhydrase and IgG4 levels in idiopathic chronic pancreatitis: relevance for diagnosis of autoimmune pancreatitis , 2005, Gut.

[22]  R Hal Scofield,et al.  Development of autoantibodies before the clinical onset of systemic lupus erythematosus. , 2003, The New England journal of medicine.

[23]  John Calvin Reed,et al.  Mitochondria-dependent apoptosis and cellular pH regulation , 2000, Cell Death and Differentiation.

[24]  M. James-Kracke Quick and accurate method to convert BCECF fluorescence to pHi: Calibration in three different types of cell preparations , 1992, Journal of cellular physiology.

[25]  Y. Mitsumoto,et al.  Development regulation of the subcellular distribution and glycosylation of GLUT1 and GLUT4 glucose transporters during myogenesis of L6 muscle cells. , 1992, The Journal of biological chemistry.

[26]  C. Zwizinski,et al.  Release of mitochondrial matrix proteins through a Ca2+-requiring, cyclosporin-sensitive pathway. , 1989, Biochemical and biophysical research communications.

[27]  I. Sjöholm Protein a from Staphylococcus Aureus , 1973, The Journal of Immunology.

[28]  J. Sjöquist,et al.  Protein a from Staphylococcus aureus. Its isolation by affinity chromatography and its use as an immunosorbent for isolation of immunoglobulins , 1972, FEBS letters.