First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity

We present limits to the amplitude of non-Gaussian primordial fluctuations in the WMAP 1 yr cosmic microwave background sky maps. A nonlinear coupling parameter, fNL, characterizes the amplitude of a quadratic term in the primordial potential. We use two statistics: one is a cubic statistic which measures phase correlations of temperature fluctuations after combining all configurations of the angular bispectrum. The other uses the Minkowski functionals to measure the morphology of the sky maps. Both methods find the WMAP data consistent with Gaussian primordial fluctuations and establish limits, -58 < fNL < 134, at 95% confidence. There is no significant frequency or scale dependence of fNL. The WMAP limit is 30 times better than COBE and validates that the power spectrum can fully characterize statistical properties of CMB anisotropy in the WMAP data to a high degree of accuracy. Our results also validate the use of a Gaussian theory for predicting the abundance of clusters in the local universe. We detect a point-source contribution to the bispectrum at 41 GHz, bsrc = (9.5 ± 4.4) × 10-5 μK3 sr2, which gives a power spectrum from point sources of csrc = (15 ± 6) × 10-3 μK2 sr in thermodynamic temperature units. This value agrees well with independent estimates of source number counts and the power spectrum at 41 GHz, indicating that bsrc directly measures residual source contributions.

[1]  E. Pierpaoli Point Sources in the Wilkinson Microwave Anisotropy Probe Sky Maps , 2003 .

[2]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing Methods and Systematic Error Limits , 2003, astro-ph/0302222.

[3]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions , 2003, astro-ph/0302214.

[4]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[5]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation , 2003, astro-ph/0302225.

[6]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[7]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[8]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[9]  E. Pierpaoli Point sources in the MAP sky maps , 2003, astro-ph/0301563.

[10]  Edward J. Wollack,et al.  The Optical Design and Characterization of the Microwave Anisotropy Probe , 2003, astro-ph/0301160.

[11]  A. Banday,et al.  COBE—DMR constraints on the non-linear coupling parameter: a wavelet based method , 2002, astro-ph/0211399.

[12]  Adrian T. Lee,et al.  Multiple methods for estimating the bispectrum of the cosmic microwave background with application to the MAXIMA data , 2002, astro-ph/0211123.

[13]  F. Bernardeau,et al.  Inflationary models inducing non-Gaussian metric fluctuations , 2002, astro-ph/0209330.

[14]  C. Ungarelli,et al.  Primordial density perturbation in the curvaton scenario , 2002, astro-ph/0208055.

[15]  F. Bernardeau,et al.  Non-Gaussianity in multifield inflation , 2002, hep-ph/0207295.

[16]  M. Tegmark,et al.  Morphological Measures of Non-Gaussianity in Cosmic Microwave Background Maps , 2002 .

[17]  E. Komatsu,et al.  The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters , 2002, astro-ph/0205468.

[18]  A. Melchiorri,et al.  Search for Non-Gaussian Signals in the BOOMERANG Maps: Pixel-Space Analysis , 2002, astro-ph/0201133.

[19]  S. Matarrese,et al.  Non-Gaussianity from Inflation , 2001, hep-ph/0112261.

[20]  Adrian T. Lee,et al.  Tests for Gaussianity of the MAXIMA-1 cosmic microwave background map. , 2001, Physical review letters.

[21]  M. Kamionkowski,et al.  Statistics of Sunyaev—Zel'dovich cluster surveys , 2001, astro-ph/0110299.

[22]  D. Lyth,et al.  Generating the curvature perturbation without an inflaton , 2001, hep-ph/0110002.

[23]  David N. Spergel,et al.  Measurement of the Cosmic Microwave Background Bispectrum on the COBE DMR Sky Maps , 2001, astro-ph/0107605.

[24]  Max Tegmark,et al.  CMB power spectrum at l = 30 – 200 from QMASK , 2001, astro-ph/0104419.

[25]  Korea,et al.  Gaussianity of Degree-Scale Cosmic Microwave Background Anisotropy Observations , 2001, astro-ph/0102406.

[26]  R. Easther,et al.  Inflationary perturbations from a potential with a step , 2001, astro-ph/0102236.

[27]  J. Maldacena,et al.  De-singularization by rotation , 2000, hep-th/0012025.

[28]  Anthony N. Lasenby,et al.  Testing the Gaussianity of the COBE DMR data with spherical wavelets , 2000 .

[29]  H. Sandvik,et al.  The complete bispectrum of COBE‐DMR four‐year maps , 2000, astro-ph/0010395.

[30]  A. Kogut,et al.  Statistical Power, the Bispectrum, and the Search for Non-Gaussianity in the Cosmic Microwave Background Anisotropy , 2000, astro-ph/0010333.

[31]  N. Aghanim,et al.  Using the COBE/DMR data as a test-bed for normality assessments , 2000, astro-ph/0009463.

[32]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[33]  David N. Spergel,et al.  Acoustic signatures in the primary microwave background bispectrum , 2000, astro-ph/0005036.

[34]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[35]  L. Verde,et al.  The Abundance of High-Redshift Objects as a Probe of Non-Gaussian Initial Conditions , 2000, astro-ph/0001366.

[36]  A. Lasenby,et al.  Do wavelets really detect non‐Gaussianity in the 4‐year COBE data? , 2000, astro-ph/0001385.

[37]  K. Gorski,et al.  A Bayesian Estimate of the Skewness of the Cosmic Microwave Background , 1999, astro-ph/9910138.

[38]  E. Komatsu,et al.  Sunyaev-Zeldovich Fluctuations from Spatial Correlations between Clusters of Galaxies , 1999, The Astrophysical journal.

[39]  A. Banday,et al.  On the Non-Gaussianity Observed in the COBE Differential Microwave Radiometer Sky Maps , 1999, astro-ph/9908070.

[40]  M. Kamionkowski,et al.  The Cosmic Microwave Background Bispectrum and Inflation , 1999, astro-ph/9907431.

[41]  J. Silk,et al.  Constraining Primordial Non-Gaussianity with the Abundance of High-Redshift Clusters , 1999, astro-ph/9906156.

[42]  James Robinson,et al.  Evolution of the cluster abundance in non-Gaussian models , 1999, astro-ph/9905098.

[43]  Max Tegmark,et al.  Is the Cosmic Microwave Background Really Non-Gaussian? , 1999, astro-ph/9904254.

[44]  K. Koyama,et al.  Constraints on a non-Gaussian χm2 cold dark matter model , 1999, astro-ph/9903027.

[45]  D. J. Fixsen,et al.  Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS) , 1998, astro-ph/9810373.

[46]  U. Arizona,et al.  Evidence for Scale-Scale Correlations in the Cosmic Microwave Background Radiation , 1998, astro-ph/9810165.

[47]  A. Heavens,et al.  Estimating non‐Gaussianity in the microwave background , 1998, astro-ph/9804222.

[48]  C. Burigana,et al.  Extragalactic source counts and contributions to the anisotropies of the cosmic microwave background: predictions for the Planck Surveyor mission , 1997, astro-ph/9711085.

[49]  K. Gorski,et al.  Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps , 1997, astro-ph/9710185.

[50]  P. Peebles An Isocurvature Model for Early Galaxy Assembly , 1997 .

[51]  S. Sarkar,et al.  Multiple inflation , 1997, hep-ph/9704286.

[52]  Y. Suto,et al.  Strong Gravitational Lensing and Velocity Function as Tools to Probe Cosmological Parameters. , 1996, astro-ph/9612074.

[53]  M. Bucher,et al.  Non-Gaussian Isocurvature Perturbations From Goldstone Modes Generated During Inflation , 1996, astro-ph/9610223.

[54]  Andrei Linde,et al.  Nongaussian Isocurvature Perturbations from Inflation , 1996, astro-ph/9610219.

[55]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[56]  Max Tegmark,et al.  A method for subtracting foregrounds from multifrequency CMB sky maps , 1995, astro-ph/9507009.

[57]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[58]  M. Srednicki,et al.  The Angular dependence of the three point correlation function of the cosmic microwave background radiation as predicted by inflationary cosmologies , 1992, astro-ph/9208001.

[59]  Bond,et al.  Stochastic inflation and nonlinear gravity. , 1991, Physical review. D, Particles and fields.

[60]  Bond,et al.  Nonlinear evolution of long-wavelength metric fluctuations in inflationary models. , 1990, Physical review. D, Particles and fields.

[61]  Changbom Park,et al.  Topology of microwave background fluctuations - Theory , 1990 .

[62]  S. Matarrese,et al.  The Effect of Non-Gaussian Statistics on the Mass Multiplicity of Cosmic Structures , 1988 .

[63]  J. Bardeen,et al.  Gauge Invariant Cosmological Perturbations , 1980 .

[64]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[65]  H. Minkowski Volumen und Oberfläche , 1903 .

[66]  William H. Press,et al.  Numerical recipes in C , 2002 .

[67]  A. Banday,et al.  Evolution of large scale structure : from recombination to Garching : proceedings of the MPA-ESO Cosmology Conference : Garching, Germany, 2-7 August 1998 , 1999 .

[68]  Alejandro Gangui,et al.  Submitted to the Astrophysical Journal , 1993 .

[69]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[70]  David W. Latham,et al.  Large-scale structures and peculiar motions in the universe , 1991 .

[71]  日本物理学会,et al.  Progress in Theoretical Physics , 1946, Nature.