Arm exponents in high dimensional percolation

We study the probability that the origin is connected to the sphere of radius r (an arm event) in critical percolation in high dimensions, namely when the dimension d is large enough or when d>6 and the lattice is sufficiently spread out. We prove that this probability decays like 1/r^2. Furthermore, we show that the probability of having k disjoint arms to distance r emanating from the vicinity of the origin is 1/r^2k.

[1]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[2]  Stanislav Smirnov,et al.  Critical percolation in the plane , 2009, 0909.4499.

[3]  Asaf Nachmias,et al.  The Alexander-Orbach conjecture holds in high dimensions , 2008, 0806.1442.

[4]  I. Kozáková Critical percolation on Cayley graphs of groups acting on trees , 2008 .

[5]  R. Hofstad,et al.  Mean-Field Behavior for Long- and Finite Range Ising Model, Percolation and Self-Avoiding Walk , 2007, 0712.0312.

[6]  Hollander den WThF,et al.  The survival probability for critical spread-out oriented percolation above 4 + 1 dimensions:II. Expansion , 2007 .

[7]  F. Hollander,et al.  The survival probability for critical spread-out oriented percolation above 4 + 1 dimensions. I. Induction , 2007 .

[8]  Iva Kozáková,et al.  Critical Percolation of Free Product of Groups , 2006, Int. J. Algebra Comput..

[9]  Takashi Hara,et al.  Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. , 2005, math-ph/0504021.

[10]  A Akira Sakai,et al.  Erratum on “Mean-field Behavior for the Survival Probability and the Percolation Point-to-Surface Connectivity” , 2005 .

[11]  A. Sakai Mean-Field Behavior for the Survival Probability and the Percolation Point-to-Surface Connectivity , 2004 .

[12]  G. Slade,et al.  Construction of the Incipient Infinite Cluster for Spread-out Oriented Percolation Above 4 + 1 Dimensions , 2002 .

[13]  S. Smirnov,et al.  CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001, math/0109120.

[14]  O. Schramm,et al.  One-Arm Exponent for Critical 2D Percolation , 2001, math/0108211.

[15]  Roberto H. Schonmann,et al.  Multiplicity of Phase Transitions and Mean-Field Criticality on Highly Non-Amenable Graphs , 2001 .

[16]  Remco van der Hofstad,et al.  Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models , 2000, math-ph/0011046.

[17]  David Reimer,et al.  Proof of the Van den Berg–Kesten Conjecture , 2000, Combinatorics, Probability and Computing.

[18]  G. Slade,et al.  The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion , 1999, math-ph/9903043.

[19]  Gordon Slade,et al.  The Scaling Limit of the Incipient Infinite Cluster in High-Dimensional Percolation. I. Critical Exponents , 1999, math-ph/9903042.

[20]  M. Aizenman On the Number of Incipient Spanning Clusters , 1996, cond-mat/9609240.

[21]  C. Liverani Decay of correlations , 1995 .

[22]  M. Basta,et al.  An introduction to percolation , 1994 .

[23]  R. Durrett Probability: Theory and Examples , 1993 .

[24]  Michael Aizenman,et al.  Percolation Critical Exponents Under the Triangle Condition , 1991 .

[25]  G. Slade,et al.  Mean-field critical behaviour for percolation in high dimensions , 1990 .

[26]  R. Burton,et al.  Density and uniqueness in percolation , 1989 .

[27]  B. Nguyen Gap exponents for percolation processes with triangle condition , 1987 .

[28]  M. Aizenman,et al.  Sharpness of the phase transition in percolation models , 1987 .

[29]  Van den Berg,et al.  Inequalities with applications to percolation and reliability , 1985, Journal of Applied Probability.

[30]  D. Brydges,et al.  Self-avoiding walk in 5 or more dimensions , 1985 .

[31]  Charles M. Newman,et al.  Tree graph inequalities and critical behavior in percolation models , 1984 .

[32]  H. Kesten Percolation theory for mathematicians , 1982 .

[33]  H. Kesten The critical probability of bond percolation on the square lattice equals 1/2 , 1980 .

[34]  T. E. Harris A lower bound for the critical probability in a certain percolation process , 1960, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  Jean Picard,et al.  The Lace Expansion and its Applications , 2006 .

[36]  P. Balister,et al.  BRANCHING PROCESSES , 2006 .

[37]  Dana Randall,et al.  The van den Berg-Kesten-Reimer Inequality: A Review , 1999 .

[38]  Jennifer Chayes,et al.  On the upper critical dimension of Bernoulli percolation , 1987 .

[39]  Van den Berg,et al.  On a Combinatorial Conjecture Concerning Disjoint Occurrences of Events , 1987 .

[40]  B. Bollobás The evolution of random graphs , 1984 .

[41]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[42]  P. Erd6s,et al.  On the Evolution of Random Graphs , 2022 .