Generalized Proportional Integral Tracking Controller for a Single-Phase Multilevel Cascade Inverter: An FPGA Implementation

This paper presents a robust linear generalized proportional integral (GPI) control scheme for the output reference trajectory tracking task on a multilevel single-phase “buck” inverter. The scheme is shown to be robust with respect to arbitrary time-varying load current demands, acting as perturbation inputs to the inverter, and to significant converter parameter variations. The discrete time version of the control scheme is implemented on a field-programmable gate array hardware. Several laboratory robustness tests are performed on the controlled inverter with excellent results.

[1]  Unidad Zacatenco,et al.  ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA , 2007 .

[2]  J. Lévine Analysis and Control of Nonlinear Systems: A Flatness-based Approach , 2009 .

[3]  Leon M. Tolbert,et al.  Charge balance control schemes for cascade multilevel converter in hybrid electric vehicles , 2002, IEEE Trans. Ind. Electron..

[4]  Slobodan Cuk,et al.  A general unified approach to modelling switching-converter power stages , 1976, 1970 IEEE Power Electronics Specialists Conference.

[5]  H. Sira-Ramirez,et al.  On the Generalized-Proportional-Integral Sliding mode Control of the "Boost-Boost" Converter , 2007, 2007 4th International Conference on Electrical and Electronics Engineering.

[6]  M. Fliess,et al.  Correcteurs proportionnels-intégraux généralisés , 2002 .

[7]  Muammer Ermis,et al.  Multi-DSP and -FPGA-Based Fully Digital Control System for Cascaded Multilevel Converters Used in FACTS Applications , 2012, IEEE Transactions on Industrial Informatics.

[8]  Hadi Vadizadeh,et al.  Calculating the Formula of Line-Voltage THD in Multilevel Inverter With Unequal DC Sources , 2011, IEEE Transactions on Industrial Electronics.

[9]  Jean Levine,et al.  Analysis and Control of Nonlinear Systems , 2009 .

[10]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[11]  K. A. Stroud,et al.  Engineering Mathematics , 2020, Nature.

[12]  Leopoldo García Franquelo,et al.  DC-Voltage-Ratio Control Strategy for Multilevel Cascaded Converters Fed With a Single DC Source , 2009, IEEE Transactions on Industrial Electronics.

[13]  Pratibha Mishra,et al.  Advanced Engineering Mathematics , 2013 .

[14]  Francesc Guinjoan,et al.  Energy-Balance Control of PV Cascaded Multilevel Grid-Connected Inverters Under Level-Shifted and Phase-Shifted PWMs , 2013, IEEE Transactions on Industrial Electronics.

[15]  R. Murray,et al.  Flat Systems , 1997 .

[16]  Xiaotian Zhang,et al.  Study of Multisampled Multilevel Inverters to Improve Control Performance , 2012, IEEE Transactions on Power Electronics.

[17]  Chuang Liu,et al.  Cascade Dual Buck Inverter With Phase-Shift Control , 2012, IEEE Transactions on Power Electronics.

[18]  Samir Palnitkar,et al.  A Guide to Digital Design and Synthesis , 1996 .

[19]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[20]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[21]  Hebertt Sira-Ramírez,et al.  Sliding Mode-Delta Modulation GPI Control of a DC Motor through a Buck Converter , 2004 .

[22]  Domingo Biel Solé,et al.  Energy-balance control of PV cascaded multilevel grid-connected inverters for phase-shifted and level-shifted pulse-width modulations , 2012 .

[23]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  H. Miranda,et al.  On the Passivity-based Control for Multilevel Inverters , 2006, 2006 IEEE International Power Electronics Congress.

[25]  Arindam Ghosh,et al.  Switching Characterization of Cascaded Multilevel-Inverter-Controlled Systems , 2008, IEEE Transactions on Industrial Electronics.

[26]  Hebertt Sira-Ramírez,et al.  Robust sigma–delta generalised proportional integral observer based control of a ‘buck’ converter with uncertain loads , 2010, Int. J. Control.

[27]  H. Miranda,et al.  Multilevel Cascade Inverter with Voltage and Current Output Regulated Using a Passivity - Based Controller , 2006, Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting.

[28]  H. Sira-Ramirez,et al.  A Comparison Between the GPI and PID Controllers for the Stabilization of a DC–DC “Buck” Converter: A Field Programmable Gate Array Implementation , 2011, IEEE Transactions on Industrial Electronics.

[29]  Bin Wu,et al.  Recent Advances and Industrial Applications of Multilevel Converters , 2010, IEEE Transactions on Industrial Electronics.

[30]  K. Gopakumar,et al.  A multilevel inverter system for an induction motor with open-end windings , 2005, IEEE Transactions on Industrial Electronics.

[31]  Guido D. Salvucci,et al.  Ieee standard for binary floating-point arithmetic , 1985 .

[32]  Chih-Chiang Hua,et al.  A Digital Predictive Current Control With Improved Sampled Inductor Current for Cascaded Inverters , 2009, IEEE Transactions on Industrial Electronics.

[33]  B. Ozpineci,et al.  Real time selective harmonic minimization for multilevel inverters connected to solar panels using Artificial Neural Network angle generation , 2010, 2010 IEEE Energy Conversion Congress and Exposition.

[34]  Slobodan Cuk,et al.  A general unified approach to modelling switching-converter power stages , 1977 .

[35]  Hirofumi Akagi,et al.  Classification, Terminology, and Application of the Modular Multilevel Cascade Converter (MMCC) , 2010, IEEE Transactions on Power Electronics.

[36]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[37]  P. Panagis,et al.  Comparison of state of the art multilevel inverters , 2008, 2008 IEEE Power Electronics Specialists Conference.