Recent development of the inverted configuration organic solar cells

Recent years, the power conversion efficiency (PCE) of normal configuration organic solar cells (OSCs) has obtained rapid progress to reach more than 6% under standard illumination, which is reasonable value for the commercial criterion. More and more research attention has been paid on the stability and lifetime of OSCs. A novel structural OSCs with high work function metal or metal oxide as the top electrode and low work function metal as the bottom anode is proposed and named as inverted configuration OSCs. The inverted configuration OSCs with high work function metal as top cathode could improve OSCs's lifetime, i.e., protecting cells from the damage by oxygen and moisture in air. Furthermore, the inverted configuration OSCs is the appealing alternative to the conventional regular structure due to the inherent vertical phase separation in the polymer active layers and high stability or long device lifetime. The inverted configuration OSCs have not only achieved an impressive PCE of 4.4%, but also exhibited an exceptional device lifetime without encapsulation. In this review article, the recent developments and vital researches on the inverted configuration OSCs are summarized.

[1]  Wolfgang Kowalsky,et al.  Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode , 2009 .

[2]  Guo-Qiang Lo,et al.  Efficient tandem organic solar cells with an Al/MoO3 intermediate layer , 2008 .

[3]  V. Shrotriya,et al.  Efficient photovoltaic energy conversion in tetracene-C 60 based heterojunctions , 2005 .

[4]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[5]  Guo-Qiang Lo,et al.  Inverted tandem organic solar cells with a MoO3/Ag/Al/Ca intermediate layer , 2010 .

[6]  D. Carroll,et al.  Pentacene nanostructural interlayer for the efficiency improvement of polymer solar cells , 2011 .

[7]  C. Brabec,et al.  Influence of oxygen on semi-transparent organic solar cells with gas permeable electrodes , 2009 .

[8]  Fujun Zhang,et al.  Inverted small molecule organic solar cells with Ca modified ITO as cathode and MoO3 modified Ag as anode , 2010 .

[9]  Junsheng Yu,et al.  Effect of buffer layers on the performance of organic photovoltaic cells based on copper phthalocyanine and C60 , 2010 .

[10]  Kion Norrman,et al.  Water-induced degradation of polymer solar cells studied by H2(18)O labeling. , 2009, ACS applied materials & interfaces.

[11]  C. Adachi,et al.  Efficient Electron Injection Mechanism in Organic Light-Emitting Diodes Using an Ultra Thin Layer of Low-Work-Function Metals , 2003 .

[12]  Ronn Andriessen,et al.  Technology development for roll-to-roll production of organic photovoltaics , 2011 .

[13]  Mikkel Jørgensen,et al.  Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating. , 2010, ACS applied materials & interfaces.

[14]  F. Krebs,et al.  Lifetimes of organic photovoltaics: photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV:PCBM-aluminium devices , 2005 .

[15]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[16]  V. Mihailetchi,et al.  New C-84 derivative and its application in a bulk heterojunction solar cell , 2006 .

[17]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[18]  Ching-Fuh Lin,et al.  High Efficiency Flexible Polymer Solar Cells Based on PET Substrates with a Nonannealing Active Layer , 2009 .

[19]  Chun-Sing Lee,et al.  Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer , 2006 .

[20]  X. Xi,et al.  A comparative study on the performances of small molecule organic solar cells based on CuPc/C60 and CuPc/C70 , 2010 .

[21]  Guo-Qiang Lo,et al.  An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .

[22]  Kristian O. Sylvester-Hvid,et al.  A solution process for inverted tandem solar cells , 2011 .

[23]  Alex K.-Y. Jen,et al.  Polymer Solar Cells That Use Self‐Assembled‐Monolayer‐ Modified ZnO/Metals as Cathodes , 2008 .

[24]  Galileo Sarasqueta,et al.  SnPc:C60 bulk heterojunction organic photovoltaic cells with MoO3 interlayer , 2009 .

[25]  Suren A. Gevorgyan,et al.  Degradation patterns in water and oxygen of an inverted polymer solar cell. , 2010, Journal of the American Chemical Society.

[26]  Dongge Ma,et al.  The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes , 2008 .

[27]  S. Fukuzumi,et al.  Photoelectrochemical Cell Based on Cup-Shaped Nanocarbon–Fullerene Composite Nanocluster Film: Enhancement of Photocurrent Generation by Cup-Shaped Nanocarbons as an Electron Transporter , 2010 .

[28]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[29]  Mm Martijn Wienk,et al.  The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study , 2007 .

[30]  Helmut Neugebauer,et al.  Flexible, long-lived, large-area, organic solar cells , 2007 .

[31]  Jin Jang,et al.  Highly efficient inverted poly(3-hexylthiophene): Methano-fullerene [6,6]-phenyl C71-butyric acid methyl ester bulk heterojunction solar cell with Cs2CO3 and MoO3 , 2011 .

[32]  Christoph J. Brabec,et al.  A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes , 2002 .

[33]  Frederik C. Krebs,et al.  Out-door testing and long-term stability of plastic solar cells , 2006 .

[34]  Jaewook Kang,et al.  Spray-coated organic solar cells with large-area of 12.25 cm2 , 2011 .

[35]  Dehai Wu,et al.  Applications of carbon materials in photovoltaic solar cells , 2009 .

[36]  Qingfeng Dong,et al.  All-spin-coating vacuum-free processed semi-transparent inverted polymer solar cells with PEDOT:PSS anode and PAH-D interfacial layer , 2010 .

[37]  Hong Ma,et al.  High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer , 2008 .

[38]  Xiao Wei Sun,et al.  An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer , 2009 .

[39]  Takayuki Kuwabara,et al.  Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer , 2008 .

[40]  Chunhui Huang,et al.  Stable small-molecule organic solar cells with 1,3,5-tris(2-N-phenylbenzimidazolyl) benzene as an organic buffer , 2007 .

[41]  K. Sreekumar,et al.  Inverted polymer solar cells with indium sulfide electron selective layer , 2010 .

[42]  Jan Fyenbo,et al.  Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing , 2010 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  Y. Yamashita,et al.  Design of Narrow-Bandgap Polymers. Syntheses and Properties of Monomers and Polymers Containing Aromatic-Donor and o-Quinoid-Acceptor Units , 1996 .

[45]  Fujun Zhang,et al.  Energy level alignment and morphology of interfaces between molecular and polymeric organic semiconductors , 2007 .

[46]  Jian Tang,et al.  Recent development of conjugated oligomers for high-efficiency bulk-heterojunction solar cells , 2010 .

[47]  Ronn Andriessen,et al.  ITO-free flexible organic solar cells with printed current collecting grids , 2011 .

[48]  Mm Martijn Wienk,et al.  Double and triple junction polymer solar cells processed from solution , 2007 .

[49]  Mikkel Jørgensen,et al.  Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode , 2011 .

[50]  Frederik C. Krebs,et al.  Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing , 2009 .

[51]  E. Gomez,et al.  Altering the Thermodynamics of Phase Separation in Inverted Bulk‐Heterojunction Organic Solar Cells , 2009 .

[52]  F. Krebs,et al.  Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing , 2007 .

[53]  F. Krebs,et al.  Lifetimes of organic photovoltaics: Combining chemical and physical characterisation techniques to study degradation mechanisms , 2006 .

[54]  Jing-Shun Huang,et al.  Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods , 2009 .

[55]  P. Destruel,et al.  Characterization of ITO/CuPc/AI and ITO/ZnPc/Al structures using optical and capacitance spectroscopy , 2003 .

[56]  Jiro Nishinaga,et al.  Structural properties of C60-multivalent metal composite layers grown by molecular beam epitaxy , 2010 .

[57]  Alex K.-Y. Jen,et al.  Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells , 2010 .

[58]  Gang Li,et al.  Vertical Phase Separation in Poly(3‐hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells , 2009 .

[59]  Jan Fyenbo,et al.  Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative , 2010 .

[60]  Masahiro Hiramoto,et al.  Effect of Thin Gold Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell , 1990 .

[61]  Richard L. Thompson,et al.  Surface segregation and self-stratification in blends of spin-cast polyfluorene derivatives , 2005 .

[62]  Xiao Wei Sun,et al.  Optimization of inverted tandem organic solar cells , 2011 .

[63]  Kenji Kawano,et al.  Open circuit voltage of stacked bulk heterojunction organic solar cells , 2006 .

[64]  T. Emrick,et al.  Monodisperse oligo(phenylene vinylene) ligands on CdSe quantum dots: synthesis and polarization anisotropy measurements. , 2008, Journal of the American Chemical Society.

[65]  Xiao Wei Sun,et al.  Optimization of an inverted organic solar cell , 2010 .

[66]  R. Hatton,et al.  Nanoimprinted large area heterojunction pentacene-C60 photovoltaic device , 2007 .

[67]  Ghassan E. Jabbour,et al.  Organic-Based Photovoltaics: Toward Low-Cost Power Generation , 2005 .

[68]  T. Majima,et al.  Synthesis and properties of fullerene (C70) complexes of 2,6-bis(porphyrin)-substituted pyrazine derivatives bound to a Pd(II) ion , 2010 .

[69]  Jizheng Wang,et al.  Fill factor in organic solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[70]  O. Inganäs,et al.  Polymer Photovoltaics with Alternating Copolymer/Fullerene Blends and Novel Device Architectures , 2010, Advanced materials.

[71]  Stephen R. Forrest,et al.  High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters , 2002 .

[72]  F. Krebs,et al.  Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells , 2010 .

[73]  F. Krebs,et al.  Lifetimes of organic photovoltaics: Using TOF-SIMS and 18O2 isotopic labelling to characterise chemical degradation mechanisms , 2006 .

[74]  Mm Martijn Wienk,et al.  Solution‐Processed Organic Tandem Solar Cells , 2006 .

[75]  Srinivas Sista,et al.  Highly Efficient Tandem Polymer Photovoltaic Cells , 2010, Advanced materials.

[76]  L. Wong,et al.  A new insight into controlling poly(3-hexylthiophene) nanofiber growth through a mixed-solvent approach for organic photovoltaics applications , 2011 .

[77]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[78]  Andrew J. Medford,et al.  The effect of post-processing treatments on inflection points in current–voltage curves of roll-to-roll processed polymer photovoltaics , 2010 .

[79]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[80]  F. Krebs,et al.  Using light-induced thermocleavage in a roll-to-roll process for polymer solar cells. , 2010, ACS applied materials & interfaces.

[81]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[82]  Takayuki Kuwabara,et al.  Inverted bulk-heterojunction organic solar cell using chemical bath deposited titanium oxide as electron collection layer , 2010 .

[83]  Antoine Kahn,et al.  Impact of electrode contamination on the α-NPD/Au hole injection barrier , 2005 .

[84]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[85]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[86]  Improved performance of polymer/ZnO nanorod hybrid solar cells by slow drying of the photoactive layer , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[87]  T. Kietzke,et al.  Efficient bulk heterojunction solar cells from regio-regular- poly(3,3‴-didodecyl quaterthiophene)/PC70BM blends , 2008 .

[88]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[89]  Gunuk Wang,et al.  Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure , 2010 .

[90]  Jian Li,et al.  Efficient Organic Solar Cells Based on Planar Metallophthalocyanines , 2009 .

[91]  Gang Li,et al.  Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer , 2008 .

[92]  Yang Yang,et al.  Efficient photovoltaic energy conversion in pentacene-based heterojunctions , 2000 .

[93]  Frederik C. Krebs,et al.  All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps , 2009 .

[94]  F. Würthner,et al.  Self-assembly of semiconductor organogelator nanowires for photoinduced charge separation. , 2009, ACS nano.

[95]  Nelson E. Coates,et al.  Charge carrier photogeneration and decay dynamics in the poly(2,7-carbazole) copolymer PCDTBT and in bulk heterojunction composites with PC 70 BM , 2010 .

[96]  Chia-Hao Chang,et al.  Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells. , 2009, Journal of the American Chemical Society.

[97]  V. Tripathi,et al.  Role of exciton blocking layers in improving efficiency of copper phthalocyanine based organic solar cells , 2008 .

[98]  Ole Hagemann,et al.  All solution processed tandem polymer solar cells based on thermocleavable materials , 2008 .

[99]  Jiho Park,et al.  Effect of Long Time Annealing and Incident Light Intensity on the Performance of Polymer: Fullerene Solar Cells , 2010, IEEE Transactions on Nanotechnology.

[100]  Valentin D. Mihailetchi,et al.  Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells , 2006 .

[101]  U. Würfel,et al.  Longterm stability of efficient inverted P3HT:PCBM solar cells , 2009 .

[102]  Zhenghong Lu,et al.  Energy-level alignment and charge injection at metal/C60/organic interfaces , 2009 .

[103]  T. Yoon,et al.  Hybrid inverted bulk heterojunction solar cells with nanoimprinted TiO2 nanopores , 2009 .

[104]  T. Yoon,et al.  Composition-dependent phase separation of P3HT:PCBM composites for high performance organic solar cells , 2010 .

[105]  de Peter Jan Veen Interface Engineering for Organic Electronics; Manufacturing of Hybrid Inorganic-Organic Molecular Crystal Devices , 2011 .

[106]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[107]  Xindong Zhang,et al.  Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer , 2008 .

[108]  Agnès Rivaton,et al.  Light-induced degradation of the active layer of polymer-based solar cells , 2010 .

[109]  S. Forrest,et al.  Inverted organic photovoltaic cells with high open-circuit voltage , 2010 .

[110]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[111]  F. Krebs Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes , 2008 .

[112]  Jan Genoe,et al.  Solar cells utilizing small molecular weight organic semiconductors , 2007 .

[113]  Do-Young Kim,et al.  MoO3/poly(9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine) double-interlayer effect on polymer solar cells , 2010 .

[114]  Christoph J. Brabec,et al.  Organic photovoltaics : concepts and realization , 2003 .

[115]  Edward Van Keuren,et al.  Endohedral fullerenes for organic photovoltaic devices. , 2009, Nature materials.

[116]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[117]  Pei-Jung Li,et al.  Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. , 2010, Journal of the American Chemical Society.

[118]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[119]  K. Choudhury,et al.  Combined effects of MoO3 interlayer and PC70BM on polymer photovoltaic device performance , 2010 .

[120]  Frederik C. Krebs,et al.  Significant Improvement of Polymer Solar Cell Stability , 2005 .

[121]  Fujun Zhang,et al.  Studies on morphology and molecular arrangement of pentacene on different substrates , 2009 .

[122]  Y. Yoshida,et al.  Organic thin-film solar cells with a Cu anode: Improvement of the photovoltaic properties on aging in air , 2009 .

[123]  Jillian M. Buriak,et al.  Stable Inverted Polymer/Fullerene Solar Cells Using a Cationic Polythiophene Modified PEDOT:PSS Cathodic Interface , 2010 .

[124]  Ching-Fuh Lin,et al.  Enhancing performance of organic–inorganic hybrid solar cells using a fullerene interlayer from all-solution processing , 2010 .

[125]  Ching-Fuh Lin,et al.  Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells , 2009 .

[126]  Jean Roncali,et al.  Molecular bulk heterojunctions: an emerging approach to organic solar cells. , 2009, Accounts of chemical research.

[127]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[128]  A. Jen,et al.  Anode modification of inverted polymer solar cells using graphene oxide , 2010 .

[129]  Fujun Zhang,et al.  Effect of an Ultra-thin Molybdenum Trioxide Layer and Illumination Intensity on the Performance of Organic Photovoltaic Devices† , 2010 .

[130]  C. Lo,et al.  Quasimetallic behavior of carrier-polarized C60 molecular layers: Experiment and theory , 2004, cond-mat/0411067.

[131]  Stephen R. Forrest,et al.  Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions , 2004 .

[132]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[133]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[134]  Jan Fyenbo,et al.  Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality. , 2010, Optics express.

[135]  Alex K.-Y. Jen,et al.  Interfacial modification to improve inverted polymer solar cells , 2008 .