Improved componentwise verified error bounds for least squares problems and underdetermined linear systems

Recently Miyajima presented algorithms to compute componentwise verified error bounds for the solution of full-rank least squares problems and underdetermined linear systems. In this paper we derive simpler and improved componentwise error bounds which are based on equalities for the error of a given approximate solution. Equalities are not improvable, and the expressions are formulated in a way that direct evaluation yields componentwise and rigorous estimates of good quality. The computed bounds are correct in a mathematical sense covering all sources of errors, in particular rounding errors. Numerical results show a gain in accuracy compared to previous results.

[1]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[2]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[3]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[4]  Shinya Miyajima Componentwise enclosure for solutions of least squares problems and underdetermined systems , 2014 .

[5]  Siegfried M. Rump,et al.  Kleine Fehlerschranken bei Matrixproblemen , 1980 .

[6]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[7]  Shinya Miyajima Fast enclosure for solutions in underdetermined systems , 2010, J. Comput. Appl. Math..

[8]  Stephen J. Wright A Collection of Problems for Which Gaussian Elimination with Partial Pivoting is Unstable , 1993, SIAM J. Sci. Comput..

[9]  Siegfried M. Rump Verified Bounds for Least Squares Problems and Underdetermined Linear Systems , 2012, SIAM J. Matrix Anal. Appl..

[10]  Åke Björck,et al.  Iterative refinement of linear least squares solutions II , 1967 .

[11]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[12]  Ulrich W. Kulisch,et al.  Perspectives on Enclosure Methods , 2001 .

[13]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[14]  P. Wedin Perturbation theory for pseudo-inverses , 1973 .

[15]  T. Csendes Developments in Reliable Computing , 2000 .

[16]  W. Tucker The Lorenz attractor exists , 1999 .

[17]  Åke Björck Iterative refinement of linear least squares solutions I , 1967 .

[18]  James Demmel,et al.  Error bounds from extra-precise iterative refinement , 2006, TOMS.

[19]  I. Duff,et al.  On the augmented system approach to sparse least-squares problems , 1989 .

[20]  Andreas Frommer,et al.  Proving Conjectures by Use of Interval Arithmetic , 2001, Perspectives on Enclosure Methods.

[21]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.