Image compression in resource-constrained eye tracking devices*

ABSTRACT Resource-constrained embedded devices, operating with images, are becoming increasingly common. Examples include remote low-power smart sensors, wireless sensor networks, autonomous cameras, eye tracking devices, etc. The principal requirements of such devices are the operation in real time, low power, low heat as well as low MIPS. These requirements can be fulfilled with the use of approximated version of original image processing algorithms. The EyeDee™ embedded eye tracking solution (developed by SuriCog) is the world's first innovative solution using the eye as a real-time mobile digital cursor, while maintaining full mobility. Being an example of resource-constrained embedded device, the system consists of a wearable device (Weetsy™ frame) capturing images on the human's eye and an embedded pre-processing device (Weetsy™ pre-processing board) sending these eye images over a transmission medium (wire/wireless transmission) to a remote processing unit for the further gaze reconstruction. This paper is aimed at introducing image compression approaches in the resource-constrained devices in general and some of their implementation in the Weetsy™ pre-processing board in particular.

[1]  Y. Asnath Victy Phamila,et al.  Low complexity energy efficient very low bit-rate image compression scheme for wireless sensor network , 2013, Inf. Process. Lett..

[2]  K. Volpp,et al.  Accuracy of smartphone applications and wearable devices for tracking physical activity data. , 2015, JAMA.

[3]  Stephen José Hanson,et al.  What connectionist models learn: Learning and representation in connectionist networks , 1990, Behavioral and Brain Sciences.

[4]  Pedro A. Amado Assunção,et al.  H.264/SVC ROI Encoding with Spatial Scalability , 2008, SIGMAP.

[5]  Abdelhamid Helali,et al.  Adaptive image compression technique for wireless sensor networks , 2011, Comput. Electr. Eng..

[6]  M. B. I. Reaz,et al.  A modified-set partitioning in hierarchical trees algorithm for real-time image compression , 2008 .

[7]  Felix Wortmann,et al.  Internet of Things , 2015, Business & Information Systems Engineering.

[8]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[9]  Huowang Chen,et al.  A simple 9/7-tap wavelet filter based on lifting scheme , 2001, ICIP.

[10]  Nanning Zheng,et al.  Automatic ROI Selection for JPEG2000 Compression of Remote Sensing Images , 2007, International Conference on Semantic Computing (ICSC 2007).

[11]  William A. Pearlman,et al.  Efficient, low-complexity image coding with a set-partitioning embedded block coder , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[12]  Diane J. Cook,et al.  Smart environments - technology, protocols and applications , 2004 .

[13]  Martin Fodslette Møller,et al.  A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.

[14]  Sung-Jea Ko,et al.  Eyeball model-based iris center localization for visible image-based eye-gaze tracking systems , 2013, IEEE Transactions on Consumer Electronics.

[15]  Iain E. G. Richardson,et al.  The H.264 Advanced Video Compression Standard , 2010 .

[16]  K. R. Rao,et al.  Image segmentation approach for realizing zoomable streaming HEVC video , 2015, 2015 International Conference on Science and Technology (TICST).

[17]  Maria Trocan,et al.  Image quality impact for eye tracking systems accuracy , 2016, 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS).

[18]  F. Dufaux,et al.  The JPEG XR image coding standard [Standards in a Nutshell] , 2009, IEEE Signal Processing Magazine.

[19]  Arjuna Madanayake,et al.  Multiplierless 16-point DCT approximation for low-complexity image and video coding , 2016, Signal Image Video Process..

[20]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[21]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[22]  Erhardt Barth,et al.  Accurate Eye Centre Localisation by Means of Gradients , 2011, VISAPP.

[23]  Ian F. Akyildiz,et al.  A survey on wireless multimedia sensor networks , 2007, Comput. Networks.

[24]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[25]  Mehdi Khosrow-Pour,et al.  Printed at: , 2011 .

[26]  Maria Trocan,et al.  Feature-Based Image Compression , 2018, ACIIDS.

[27]  S. B. Hutton,et al.  Eye Tracking Methodology , 2019, Eye Movement Research.

[28]  Hesham A. Ali,et al.  Image compression algorithms in wireless multimedia sensor networks: A survey , 2015 .

[29]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[30]  Jean-Marie Moureaux,et al.  Design and performance analysis of a zonal DCT-based image encoder for Wireless Camera Sensor Networks , 2012, Microelectron. J..

[31]  Glen G. Langdon,et al.  An Overview of the Basic Principles of the Q-Coder Adaptive Binary Arithmetic Coder , 1988, IBM J. Res. Dev..

[32]  Ali Tabatabai,et al.  Sub-band coding of digital images using symmetric short kernel filters and arithmetic coding techniques , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[33]  Maria Trocan,et al.  Neural Network Based Eye Tracking , 2017, ICCCI.

[34]  Thierry Blu,et al.  Image Denoising in Mixed Poisson–Gaussian Noise , 2011, IEEE Transactions on Image Processing.

[35]  Hamid Sharif,et al.  A Survey of Energy-Efficient Compression and Communication Techniques for Multimedia in Resource Constrained Systems , 2013, IEEE Communications Surveys & Tutorials.

[36]  Deborah Estrin,et al.  Energy-Efficient Image Compression for Resource-Constrained Platforms , 2009, IEEE Transactions on Image Processing.

[37]  Peter Schelkens,et al.  An Implementation of multiple Region-Of-Interest Models in H.264/AVC , 2008 .

[38]  Gary J. Sullivan,et al.  Overview of the High Efficiency Video Coding (HEVC) Standard , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[39]  Savita S. Jadhav,et al.  JPEG XR an Image Coding Standard , 2012 .

[40]  Theo Gevers,et al.  Accurate Eye Center Location through Invariant Isocentric Patterns , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Jie Xu,et al.  DeepN-JPEG: A Deep Neural Network Favorable JPEG-based Image Compression Framework , 2018, 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).

[42]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[43]  Touradj Ebrahimi,et al.  The JPEG 2000 still image compression standard , 2001, IEEE Signal Process. Mag..

[44]  Krishnendu Chakrabarty,et al.  System-on-a-chip test-data compression and decompressionarchitectures based on Golomb codes , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[45]  Jianqin Zhou,et al.  On discrete cosine transform , 2011, ArXiv.

[46]  Martin Sweeting,et al.  Image compression systems on board satellites , 2009 .

[47]  Iain E. G. Richardson,et al.  H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia , 2003 .

[48]  Tony Lindeberg,et al.  Scale Invariant Feature Transform , 2012, Scholarpedia.

[49]  Theo Gevers,et al.  Robustifying eye center localization by head pose cues , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Jerald L Schnoor,et al.  What the h? , 2008, Environmental science & technology.

[51]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[52]  Seema Nagar,et al.  Eye center localization and detection using radial mapping , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[53]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[54]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[55]  Margaret Martonosi,et al.  Data compression algorithms for energy-constrained devices in delay tolerant networks , 2006, SenSys '06.

[56]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[57]  Qi Hao,et al.  A Multi-Agent-Based Intelligent Sensor and Actuator Network Design for Smart House and Home Automation , 2013, J. Sens. Actuator Networks.

[58]  Fábio M. Bayer,et al.  DCT-like Transform for Image Compression Requires 14 Additions Only , 2017, ArXiv.

[59]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[60]  Alhussein A. Abouzeid,et al.  Energy efficient distributed image compression in resource-constrained multihop wireless networks , 2005, Comput. Commun..