Coordinated regulation of acid resistance in Escherichia coli

BackgroundEnteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored.ResultsWe utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally.ConclusionsOur data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate.

Ning Mao | Meng Sun | Hang Su | Hao Li | David Li | Tao Tu | James E. Galagan | Jang-Hwan Cho | Jing Mi | Brandon G. Wong | Yanyu Zhao | Joseph Wade | Lin Jin | Christopher P. Mancuso | Daniel S. Reynolds | Chen Guo | Benjamin H. Weinberg | Julia Wang | Jessica Kim | James Chuang | David B. Bernstein | Wilson W. Wong | Anna Lyubetskaya | Suma Jaini | Brent Honda | John W. Foster | Cong Ba | Qian Li | Christine Yoon | Nitinun Varongchayakul | Arion Stettner | Nae Gyune Rim | Kenny F. Chou | Patricia Aquino | Krutika Hosur | Joanna G. Chiu | Iriny Ekladious | Dongjian Hu | Marianna K. Sayeg | Winnie S. Wong | Stephen L. Alexander | Seth I. Bensussen | Dana Braff | Susie Cha | Daniel I. Cheng | Kenny Chou | Daniel E. Gastler | Daniel J. Grasso | John S. Greifenberger | Anna K. Hawes | Divya V. Israni | Saloni R. Jain | Junyu Lei | Salwa F. Masud | Cari L. Meisel | Christine S. Nykyforchyn | Minhee Park | Hannah M. Peterson | Alfred K. Ramirez | Jared C. Saffie | Wendell R. Su | Yaqing Su | Meghan M. Thommes | Tyler E. Wagner | Rouhui Yang | Anastasia Yaroslavsky | Alicia J. Zollinger | Anne M. Stringer | Sahadaven Raman | Natasha Broude | J. Galagan | Hao Li | J. Foster | W. Wong | A. Lyubetskaya | J. Wade | Suma Jaini | T. Tu | N. Rim | D. Gastler | Meng Sun | Lin Jin | David B. Bernstein | Ning Mao | A. Yaroslavsky | Dan Cheng | Salwa F. Masud | Seth I. Bensussen | Alfred K. Ramirez | Patricia Aquino | D. Braff | Minhee Park | Junyu Lei | J. Cho | Yaqing Su | Daniel J. Grasso | Iriny Ekladious | H. Su | Jessica Kim | Krutika Hosur | N. Varongchayakul | Yanyu Zhao | Jing Mi | David Li | B. Honda | Qian Li | Chen Guo | M. Thommes | C. Meisel | Dongjian Hu | Cong Ba | N. Broude | C. Yoon | Arion Stettner | Julia Wang | Winnie S. Wong | Stephen L. Alexander | S. Cha | James Chuang | Rouhui Yang | Sahadaven Raman

[1]  George M Church,et al.  Regulatory network of acid resistance genes in Escherichia coli , 2003, Molecular microbiology.

[2]  James E. Galagan,et al.  Role of intragenic binding of cAMP responsive protein (CRP) in regulation of the succinate dehydrogenase genes Rv0249c-Rv0247c in TB complex mycobacteria , 2015, Nucleic acids research.

[3]  Bruce N. Ames,et al.  Compounds Which Serve as the Sole Source of Carbon or Nitrogen for Salmonella typhimurium LT-2 , 1969, Journal of bacteriology.

[4]  John W. Foster,et al.  Escherichia coli Glutamate- and Arginine-Dependent Acid Resistance Systems Increase Internal pH and Reverse Transmembrane Potential , 2004, Journal of bacteriology.

[5]  G. Bennett,et al.  Mechanisms of acid resistance in enterohemorrhagic Escherichia coli , 1996, Applied and environmental microbiology.

[6]  G. Venemâ,et al.  A chloride‐inducible acid resistance mechanism in Lactococcus lactis and its regulation , 1998, Molecular microbiology.

[7]  M. Radmacher,et al.  pH Regulates Genes for Flagellar Motility, Catabolism, and Oxidative Stress in Escherichia coli K-12 , 2005, Journal of bacteriology.

[8]  P. Small,et al.  Transcriptional Expression of Escherichia coli Glutamate-Dependent Acid Resistance Genes gadA and gadBC in an hns rpoS Mutant , 2003, Journal of bacteriology.

[9]  J. Riordan,et al.  Sigma Factor N, Liaison to an ntrC and rpoS Dependent Regulatory Pathway Controlling Acid Resistance and the LEE in Enterohemorrhagic Escherichia coli , 2012, PloS one.

[10]  A. Khodursky,et al.  Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. M. Benjamin,et al.  Acid tolerance of enterohemorrhagic Escherichia coli , 1995, Applied and environmental microbiology.

[12]  Kirsten Jung,et al.  CadC-Mediated Activation of the cadBA Promoter in Escherichia coli , 2006, Journal of Molecular Microbiology and Biotechnology.

[13]  D. Conner,et al.  Growth and survival of Escherichia coli O157:H7 under acidic conditions , 1995, Applied and environmental microbiology.

[14]  Walid A Houry,et al.  Mechanisms of acid resistance in Escherichia coli. , 2013, Annual review of microbiology.

[15]  Edward J. O'Brien,et al.  Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli , 2015, Nature Communications.

[16]  Dongjun Chung,et al.  Impact of Anaerobiosis on Expression of the Iron-Responsive Fur and RyhB Regulons , 2015, mBio.

[17]  Regine Hengge,et al.  Multiple stress signal integration in the regulation of the complex σS‐dependent csiD‐ygaF‐gabDTP operon in Escherichia coli , 2003, Molecular microbiology.

[18]  Byung-Kwan Cho,et al.  The architecture of ArgR-DNA complexes at the genome-scale in Escherichia coli , 2015, Nucleic acids research.

[19]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[20]  Anne M. Stringer,et al.  Identification of HilD-Regulated Genes in Salmonella enterica Serovar Typhimurium , 2013, Journal of bacteriology.

[21]  John W. Foster,et al.  Control of Acid Resistance inEscherichia coli , 1999, Journal of bacteriology.

[22]  Peilong Lu,et al.  L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia , 2013, Cell Research.

[23]  J. Foster,et al.  Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. , 2001, Microbiology.

[24]  Atef K. Sayed,et al.  A 750 bp sensory integration region directs global control of the Escherichia coli GadE acid resistance regulator , 2009, Molecular microbiology.

[25]  P. Small,et al.  Acid resistance in enteric bacteria , 1993, Infection and immunity.

[26]  Dan M. Park,et al.  The Influence of Repressor DNA Binding Site Architecture on Transcriptional Control , 2014, mBio.

[27]  Anna Lyubetskaya,et al.  Transcription Factor Binding Site Mapping Using ChIP-Seq. , 2014, Microbiology spectrum.

[28]  M. Inouye,et al.  EnvZ-OmpR Interaction and Osmoregulation in Escherichia coli * , 2002, The Journal of Biological Chemistry.

[29]  G. Bennett,et al.  Molecular characterization of adiY, a regulatory gene which affects expression of the biodegradative acid-induced arginine decarboxylase gene (adiA) of Escherichia coli. , 1996, Microbiology.

[30]  Nicholas M. Luscombe,et al.  Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12 , 2011, Nucleic acids research.

[31]  Amy K. Schmid,et al.  Prevalence of transcription promoters within archaeal operons and coding sequences , 2009, Molecular systems biology.

[32]  J. Foster,et al.  An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid‐encoded regulator, Per , 2001, Molecular microbiology.

[33]  Anna Lyubetskaya,et al.  ChIP-Seq and the complexity of bacterial transcriptional regulation. , 2013, Current topics in microbiology and immunology.

[34]  M. Inouye,et al.  Transcription Regulation of ompF and ompC by a Single Transcription Factor, OmpR* , 2006, Journal of Biological Chemistry.

[35]  Nicholas M. Luscombe,et al.  Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli , 2010, Nucleic acids research.

[36]  Thomas Abeel,et al.  Decoding ChIP-seq with a double-binding signal refines binding peaks to single-nucleotides and predicts cooperative interaction , 2014, Genome research.

[37]  Irene M. Ong,et al.  Genome-scale Analysis of Escherichia coli FNR Reveals Complex Features of Transcription Factor Binding , 2013, PLoS genetics.

[38]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  B. Magasanik,et al.  Nitrogen regulation system of Klebsiella aerogenes: the nac gene , 1983, Journal of bacteriology.

[40]  A. Newton,et al.  A sigma 54 promoter and downstream sequence elements ftr2 and ftr3 are required for regulated expression of divergent transcription units flaN and flbG in Caulobacter crescentus , 1993, Journal of bacteriology.

[41]  Anna Lyubetskaya,et al.  Characterization of a cAMP responsive transcription factor, Cmr (Rv1675c), in TB complex mycobacteria reveals overlap with the DosR (DevR) dormancy regulon , 2015, Nucleic acids research.

[42]  Geraint Barton,et al.  Nitrogen stress response and stringent response are coupled in Escherichia coli , 2014, Nature Communications.

[43]  M. Inouye,et al.  Interaction of EnvZ, a sensory histidine kinase, with phosphorylated OmpR, the cognate response regulator , 2002, Molecular microbiology.

[44]  Atef K. Sayed,et al.  The Escherichia coli AraC-family regulators GadX and GadW activate gadE, the central activator of glutamate-dependent acid resistance. , 2007, Microbiology.

[45]  S. Teichmann,et al.  Functional determinants of transcription factors in Escherichia coli: protein families and binding sites. , 2003, Trends in genetics : TIG.

[46]  S Baumberg,et al.  Purification and initial characterization of AhrC: the regulator of arginine metabolism genes in Bacillus subtilis , 1992, Molecular microbiology.

[47]  J. Galagan,et al.  A blind deconvolution approach to high-resolution mapping of transcription factor binding sites from ChIP-seq data , 2009, Genome Biology.

[48]  J. Cronan,et al.  Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli , 1999, Molecular microbiology.

[49]  Francesco Falciani,et al.  A systems biology approach sheds new light on Escherichia coli acid resistance , 2011, Nucleic acids research.

[50]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[51]  John W. Foster,et al.  Acid Resistance Systems Required for Survival of Escherichia coli O157:H7 in the Bovine Gastrointestinal Tract and in Apple Cider Are Different , 2004, Applied and Environmental Microbiology.

[52]  John W. Foster,et al.  Collaborative Regulation of Escherichia coli Glutamate-Dependent Acid Resistance by Two AraC-Like Regulators, GadX and GadW (YhiW) , 2002, Journal of bacteriology.

[53]  Charles J. Dorman,et al.  Bacterial Regulon Evolution: Distinct Responses and Roles for the Identical OmpR Proteins of Salmonella Typhimurium and Escherichia coli in the Acid Stress Response , 2014, PLoS genetics.

[54]  C. Hill,et al.  A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid , 2001, Molecular microbiology.

[55]  J. Foster,et al.  GadE (YhiE) activates glutamate decarboxylase‐dependent acid resistance in Escherichia coli K‐12 , 2003, Molecular microbiology.

[56]  J. Foster,et al.  Acid resistance in Escherichia coli. , 2003, Advances in applied microbiology.

[57]  R. Bender,et al.  The nac (Nitrogen Assimilation Control) Gene from Escherichia coli , 1998, Journal of bacteriology.

[58]  Nathan D. Price,et al.  The DNA-binding network of Mycobacterium tuberculosis , 2015, Nature Communications.

[59]  John W. Foster,et al.  Characterization of EvgAS-YdeO-GadE Branched Regulatory Circuit Governing Glutamate-Dependent Acid Resistance in Escherichia coli , 2004, Journal of bacteriology.

[60]  T. Whittam,et al.  Inactivation of alternative sigma factor 54 (RpoN) leads to increased acid resistance, and alters locus of enterocyte effacement (LEE) expression in Escherichia coli O157 : H7. , 2010, Microbiology.

[61]  Patricia Bordes,et al.  Acid stress response in Escherichia coli: mechanism of regulation of gadA transcription by RcsB and GadE , 2010, Nucleic acids research.

[62]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[63]  Peter D. Karp,et al.  EcoCyc: fusing model organism databases with systems biology , 2012, Nucleic Acids Res..

[64]  Donghyuk Kim,et al.  Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655. , 2015, Cell reports.

[65]  S. Broitman,et al.  Influence of gastric acidity on bacterial and parasitic enteric infections. A perspective. , 1973, Annals of internal medicine.

[66]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[67]  Yves Van de Peer,et al.  The Mycobacterium tuberculosis regulatory network and hypoxia , 2013, Nature.

[68]  Michael J. Palumbo,et al.  Genome-Scale Analyses of Escherichia coli and Salmonella enterica AraC Reveal Noncanonical Targets and an Expanded Core Regulon , 2013, Journal of bacteriology.

[69]  C Marschall,et al.  Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma s and requires activation by cAMP-CRP. , 1998, Journal of molecular biology.

[70]  S. Stevens,et al.  RcsB determines the locus of enterocyte effacement (LEE) expression and adherence phenotype of Escherichia coli O157 : H7 spinach outbreak strain TW14359 and coordinates bicarbonate-dependent LEE activation with repression of motility. , 2013, Microbiology.

[71]  R. Bender,et al.  A NAC for Regulating Metabolism: the Nitrogen Assimilation Control Protein (NAC) from Klebsiella pneumoniae , 2010, Journal of bacteriology.

[72]  Elizabeth Yohannes,et al.  Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12 , 2006, BMC Microbiology.

[73]  R. Utsumi,et al.  Functional Characterization in Vitro of All Two-component Signal Transduction Systems from Escherichia coli* , 2005, Journal of Biological Chemistry.

[74]  J. Wade,et al.  Comprehensive Mapping of the Escherichia coli Flagellar Regulatory Network , 2014, PLoS genetics.

[75]  John W. Foster,et al.  Escherichia coli acid resistance: tales of an amateur acidophile , 2004, Nature Reviews Microbiology.

[76]  A. Danchin,et al.  GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. , 2004, Microbiology.

[77]  T. Furuchi,et al.  Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome. , 1991, The Journal of biological chemistry.

[78]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[79]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..