COSMIC FLOW FROM TWO MICRON ALL-SKY REDSHIFT SURVEY: THE ORIGIN OF COSMIC MICROWAVE BACKGROUND DIPOLE AND IMPLICATIONS FOR ΛCDM COSMOLOGY

We generate the peculiar velocity field for the Two Micron All-Sky Redshift Survey (2MRS) catalog using an orbit-reconstruction algorithm. The reconstructed velocities of individual objects in 2MRS are well correlated with the peculiar velocities obtained from high-precision observed distances within 3000 km s−1. We estimate the mean matter density to be Ωm = 0.31 ± 0.05 by comparing observed to reconstructed velocities in this volume. The reconstructed motion of the Local Group in the rest frame established by distances within 3000 km s−1 agrees with the observed motion and is generated by fluctuations within this volume, in agreement with observations. Having tested our method against observed distances, we reconstruct the velocity field of 2MRS in successively larger radii, to study the problem of convergence toward the cosmic microwave background (CMB) dipole. We find that less than half of the amplitude of the CMB dipole is generated within a volume enclosing the Hydra–Centaurus–Norma supercluster at around 40 h−1 Mpc. Although most of the amplitude of the CMB dipole seems to be recovered by 120 h−1 Mpc, the direction does not agree and hence we observe no convergence up to this scale. Due to dominant superclusters such as Shapley or Horologium–Reticulum in the southern hemisphere at scales above 120 h−1 Mpc, one might need to go well beyond 200 h−1 Mpc to fully recover the dipole vector. We develop a statistical model which allows us to estimate cosmological parameters from the reconstructed growth of convergence of the velocity of the Local Group toward the CMB dipole motion. For scales up to 60 h−1 Mpc, assuming a Local Group velocity of 627 km s−1, we estimate Ωmh2 = 0.11 ± 0.06 and σ8 = 0.9 ± 0.4, in agreement with WMAP5 measurements at the 1σ level. However, for scales up to 100 h−1 Mpc, we obtain Ωmh2 = 0.08 ± 0.03 and σ8 = 1.0 ± 0.4, which agrees at the 1σ to 2σ level with WMAP5 results.

[1]  M. Hudson,et al.  Consistently large cosmic flows on scales of 100 h−1 Mpc: a challenge for the standard ΛCDM cosmology , 2008, 0809.4041.

[2]  K. Masters,et al.  Erratum: “Groups of Galaxies in the Two Micron All Sky Redshift Survey” (ApJ, 655, 790 [2007]) , 2008 .

[3]  D. Kocevski,et al.  A Measurement of Large-Scale Peculiar Velocities of Clusters of Galaxies: Results and Cosmological Implications , 2008, 0809.3734.

[4]  A. Lewis,et al.  Deuterium abundance in the most metal-poor damped Lyman alpha system: converging on Ωb,0h2 , 2008, 0805.0594.

[5]  A. Loeb,et al.  The density contrast of the Shapley supercluster , 2008, 0805.0596.

[6]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[7]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[8]  S. Colombi,et al.  Observational biases in Lagrangian reconstructions of cosmic velocity fields , 2007, 0707.3483.

[9]  D. Kocevski,et al.  Our Peculiar Motion Away from the Local Void , 2007, 0705.4139.

[10]  H. Hoekstra,et al.  Cosmological constraints from the 100-deg2 weak-lensing survey , 2007, astro-ph/0703570.

[11]  R. Teyssier,et al.  Cosmic velocity–gravity relation in redshift space , 2007, 0805.1693.

[12]  Y. Mellier,et al.  COSMOS: Three-dimensional Weak Lensing and the Growth of Structure , 2007, astro-ph/0701480.

[13]  K. Masters,et al.  Groups of Galaxies in the Two Micron All Sky Redshift Survey , 2006, astro-ph/0610732.

[14]  O. Lahav,et al.  Reconstructed density and velocity fields from the 2MASS redshift survey , 2006, astro-ph/0610005.

[15]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[16]  D. Kocevski,et al.  On the Origin of the Local Group’s Peculiar Velocity , 2005, astro-ph/0510106.

[17]  O. Lahav,et al.  The dipole anisotropy of the 2 Micron All-Sky Redshift Survey , 2005, astro-ph/0507166.

[18]  M. Hudson,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 6/22/04 COSMOLOGICAL PARAMETERS FROM THE COMPARISON OF THE 2MASS GRAVITY FIELD WITH PECULIAR VELOCITY SURVEYS , 2005 .

[19]  R. Brent Tully,et al.  The Cosmological Mean Density and Its Local Variations Probed by Peculiar Velocities , 2005, astro-ph/0509313.

[20]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[21]  N. Katz,et al.  The Galaxy Angular Correlation Functions and Power Spectrum from the Two Micron All Sky Survey , 2003, astro-ph/0304005.

[22]  M. Colless,et al.  Maps of the Cosmos , 2005 .

[23]  A. Fairall,et al.  Nearby Large-Scale Structures and the Zone of Avoidance , 2005 .

[24]  J. Mohr,et al.  K-Band Properties of Galaxy Clusters and Groups: Luminosity Function, Radial Distribution, and Halo Occupation Number , 2004, astro-ph/0402308.

[25]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[26]  Y. Brenier,et al.  Reconstruction of the early Universe as a convex optimization problem , 2003, astro-ph/0304214.

[27]  E. Grebel,et al.  Local galaxy flows within 5 Mpc , 2002, astro-ph/0211011.

[28]  G. Theureau,et al.  Kinematics of the local universe - IX. The Perseus-Pisces supercluster and the Tolman-Bondi model , 2001, astro-ph/0109080.

[29]  Gerard A. Luppino,et al.  The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances , 2000, astro-ph/0011223.

[30]  M. Pierce,et al.  Distances to Galaxies from the Correlation between Luminosities and Line Widths. III. Cluster Template and Global Measurement of H0 , 1999, astro-ph/9911052.

[31]  Helen Valentine,et al.  The IRAS PSCz dipole , 1999 .

[32]  M. Plionis,et al.  The X-Ray Cluster Dipole , 1998 .

[33]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[34]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[35]  M. Geller,et al.  Groups of Galaxies in the Northern CfA Redshift Survey , 1997 .

[36]  E. Branchini,et al.  Reconstructing positions and peculiar velocities of galaxy clusters within 25,000 kilometers per second: The cluster real space dipole , 1996 .

[37]  P. Peebles,et al.  Action Principle Solutions for Galaxy Motions within 3000 Kilometers per Second , 1995, astro-ph/9506144.

[38]  T. Lauer,et al.  Can standard cosmological models explain the observed Abell cluster bulk flow , 1994, astro-ph/9406038.

[39]  T. Lauer,et al.  The Motion of the Local Group with Respect to the 15,000 Kilometer per Second Abell Cluster Inertial Frame , 1994 .

[40]  M. Hudson Optical galaxies within $8000\,\ {\rm km} \ {\rm s}^{-1}$ – IV. The peculiar velocity field , 1994 .

[41]  M. Hudson Optical galaxies within 8000 km s–1 – II. The peculiar velocity of the Local Group , 1993 .

[42]  Wendy L. Freedman,et al.  The Tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies , 1993 .

[43]  J. Tonry,et al.  A redshift survey of IRAS galaxies. VII - The infrared and redshift data for the 1.936 Jansky sample , 1992 .

[44]  John P. Huchra,et al.  A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields , 1991 .

[45]  Ian R. Parry,et al.  A sparse-sampled redshift survey of IRAS galaxies. I. The convergence of the IRAS dipole and the origin of our motion with respect to the microwave background. , 1990 .

[46]  Local gravity and peculiar velocity - Probes of cosmological models , 1990 .

[47]  Local gravity and large-scale structure , 1990 .

[48]  O. Lahav,et al.  Cosmological deductions from the alignment of local gravity and motion , 1989 .

[49]  O. Lahav,et al.  The spatial distribution of X-ray clusters of galaxies , 1989 .

[50]  R. Scaramella,et al.  A marked concentration of galaxy clusters: is this the origin of large-scale motions? , 1989, Nature.

[51]  Nick Kaiser,et al.  THEORETICAL IMPLICATIONS OF COSMOLOGICAL DIPOLES , 1989 .

[52]  O. Lahav,et al.  The peculiar acceleration of the Local Group as deduced from the optical and IRAS flux dipoles , 1988 .

[53]  John L. Tonry,et al.  A new technique for measuring extragalactic distances , 1988 .

[54]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[55]  O. Lahav Optical dipole anisotropy , 1987 .

[56]  A. Yahil,et al.  The dipole anisotropies of the IRAS galaxies and the microwave background radiation , 1986 .

[57]  J. Huchra,et al.  Groups of galaxies. I. Nearby groups , 1982 .

[58]  J. Huchra,et al.  A survey of galaxy redshifts. III - The density field and the induced gravity field , 1982 .

[59]  Allan Sandage,et al.  The velocity field of bright nearby galaxies. III - The distribution in space of galaxies within 80 megaparsecs - The north galactic density anomaly , 1980 .

[60]  J. C. Jackson A Critique of Rees's Theory of Primordial Gravitational Radiation , 1972 .