Crystal structure of the α1B-adrenergic receptor reveals molecular determinants of selective ligand recognition

[1]  A. Plückthun,et al.  Complexes of the neurotensin receptor 1 with small-molecule ligands reveal structural determinants of full, partial, and inverse agonism , 2021, Science Advances.

[2]  S. Athey,et al.  The Association Between Alpha-1 Adrenergic Receptor Antagonists and In-Hospital Mortality from COVID-19 , 2020, medRxiv : the preprint server for health sciences.

[3]  R. Sunahara,et al.  Binding pathway determines norepinephrine selectivity for the human β1AR over β2AR , 2020, Cell Research.

[4]  D. Perez α1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition , 2020, Frontiers in Pharmacology.

[5]  J. Baker,et al.  The affinity and selectivity of α‐adrenoceptor antagonists, antidepressants, and antipsychotics for the human α1A, α1B, and α1D‐adrenoceptors , 2020, Pharmacology research & perspectives.

[6]  A. Plückthun,et al.  Optimizing the α1B-adrenergic receptor for solution NMR studies. , 2020, Biochimica et biophysica acta. Biomembranes.

[7]  S. Athey,et al.  Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. , 2020, The Journal of clinical investigation.

[8]  D. Chalmers,et al.  INPHARMA based determination of ligand binding modes at α1-adrenergic receptors explains the molecular basis of subtype selectivity. , 2020, Chemistry.

[9]  B. Kobilka,et al.  Activation of the α2B adrenoceptor by the sedative sympatholytic dexmedetomidine , 2020, Nature Chemical Biology.

[10]  Zhipu Luo,et al.  Haloperidol bound D2 dopamine receptor structure inspired the discovery of subtype selective ligands , 2020, Nature Communications.

[11]  A. Plückthun,et al.  Chaperone-assisted structure elucidation with DARPins. , 2020, Current opinion in structural biology.

[12]  C. Cao,et al.  Crystal structure of dopamine receptor D4 bound to the subtype-selective ligand, L745870 , 2019 .

[13]  Liaoyuan A. Hu,et al.  Molecular Mechanism for Ligand Recognition and Subtype Selectivity of α2C Adrenergic Receptor. , 2019, Cell reports.

[14]  R. Stevens,et al.  Structural Basis of the Diversity of Adrenergic Receptors. , 2019, Cell reports.

[15]  Xuejun C. Zhang,et al.  Crystal structure of dopamine receptor D4 bound to the subtype selective ligand, L745870 , 2019, eLife.

[16]  A. Plückthun,et al.  Rigid fusions of designed helical repeat binding proteins efficiently protect a binding surface from crystal contacts , 2019, Scientific Reports.

[17]  David Wifling,et al.  Universal Activation Index for Class A GPCRs , 2019, J. Chem. Inf. Model..

[18]  J. Docherty The pharmacology of α1-adrenoceptor subtypes. , 2019, European journal of pharmacology.

[19]  J. García-Sainz,et al.  Updates in the function and regulation of α1‐adrenoceptors , 2019, British journal of pharmacology.

[20]  Robert Abel,et al.  OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. , 2019, Journal of chemical theory and computation.

[21]  Justyna Aleksandra Wojdyla,et al.  Automated data collection and real-time data analysis suite for serial synchrotron crystallography , 2019, Journal of synchrotron radiation.

[22]  I. D. de Esch,et al.  Aminergic GPCR-Ligand Interactions: A Chemical and Structural Map of Receptor Mutation Data. , 2018, Journal of medicinal chemistry.

[23]  Andrew S Doré,et al.  Molecular basis for high-affinity agonist binding in GPCRs , 2018, Science.

[24]  K. Kinzler,et al.  Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome , 2018, Nature.

[25]  B. Shoichet,et al.  Structure-guided development of selective M3 muscarinic acetylcholine receptor antagonists , 2018, Proceedings of the National Academy of Sciences.

[26]  A. Plückthun,et al.  High-resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist , 2018, Nature Structural & Molecular Biology.

[27]  Andrea V Fuentes,et al.  Comprehension of Top 200 Prescribed Drugs in the US as a Resource for Pharmacy Teaching, Training and Practice , 2018, Pharmacy.

[28]  A. Plückthun,et al.  Determinants of Ligand Subtype-Selectivity at α1A-Adrenoceptor Revealed Using Saturation Transfer Difference (STD) NMR. , 2018, ACS chemical biology.

[29]  Anat Levit,et al.  STRUCTURE OF THE D2 DOPAMINE RECEPTOR BOUND TO THE ATYPICAL ANTIPSYCHOTIC DRUG RISPERIDONE , 2018, Nature.

[30]  Anat Levit,et al.  D4 dopamine receptor high-resolution structures enable the discovery of selective agonists , 2017, Science.

[31]  Andreas Plückthun,et al.  Rigidly connected multispecific artificial binders with adjustable geometries , 2017, Scientific Reports.

[32]  D. E. Nichols,et al.  Crystal Structure of an LSD-Bound Human Serotonin Receptor , 2017, Cell.

[33]  Arthur Christopoulos,et al.  Crystal structures of the M1 and M4 muscarinic acetylcholine receptors , 2016, Nature.

[34]  Chris de Graaf,et al.  A Molecular Pharmacologist’s Guide to G Protein–Coupled Receptor Crystallography , 2015, Molecular Pharmacology.

[35]  A. Plückthun,et al.  A cleavable ligand column for the rapid isolation of large quantities of homogeneous and functional neurotensin receptor 1 variants from E. coli. , 2015, Protein expression and purification.

[36]  Lei Shi,et al.  What Can Crystal Structures of Aminergic Receptors Tell Us about Designing Subtype-Selective Ligands? , 2015, Pharmacological Reviews.

[37]  Shane M. Devine,et al.  Molecular Mechanisms of Bitopic Ligand Engagement with the M1 Muscarinic Acetylcholine Receptor* , 2014, The Journal of Biological Chemistry.

[38]  R. Griffith,et al.  An aspartate in the second extracellular loop of the α(1B) adrenoceptor regulates agonist binding. , 2014, European journal of pharmacology.

[39]  Arthur Christopoulos,et al.  Molecular Determinants of Allosteric Modulation at the M1 Muscarinic Acetylcholine Receptor* , 2014, The Journal of Biological Chemistry.

[40]  K. Garcia,et al.  Adrenaline-activated structure of the β2-adrenoceptor stabilized by an engineered nanobody , 2013, Nature.

[41]  R. Leurs,et al.  A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design , 2013, British journal of pharmacology.

[42]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[43]  Andreas Plückthun,et al.  Direct molecular evolution of detergent-stable G protein-coupled receptors using polymer encapsulated cells. , 2013, Journal of molecular biology.

[44]  G. Kinsella,et al.  Computational study of the proton affinity and basicity of structurally diverse α1‐adrenoceptor ligands , 2012 .

[45]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[46]  Gebhard F. X. Schertler,et al.  Two distinct conformations of helix 6 observed in antagonist-bound structures of a β1-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[47]  P. Sexton,et al.  The Role of Transmembrane Domain 3 in the Actions of Orthosteric, Allosteric, and Atypical Agonists of the M4 Muscarinic Acetylcholine Receptor , 2011, Molecular Pharmacology.

[48]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[49]  V. Doze,et al.  Cardiac and neuroprotection regulated by α1-adrenergic receptor subtypes , 2011, Journal of receptor and signal transduction research.

[50]  D. Perez,et al.  Modulation of immune cell function by α(1)-adrenergic receptor activation. , 2011, Current topics in membranes.

[51]  Jens Meiler,et al.  ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. , 2011, Methods in enzymology.

[52]  Arthur Christopoulos,et al.  Identification of Orthosteric and Allosteric Site Mutations in M2 Muscarinic Acetylcholine Receptors That Contribute to Ligand-selective Signaling Bias* , 2010, The Journal of Biological Chemistry.

[53]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[54]  Andreas Plückthun,et al.  Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity , 2008, Proceedings of the National Academy of Sciences.

[55]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[56]  R. Stevens,et al.  Microscale fluorescent thermal stability assay for membrane proteins. , 2008, Structure.

[57]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[58]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[59]  Federico D. Sacerdoti,et al.  Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[60]  C. Melchiorre,et al.  Absolute Configuration of the α1B-Adrenoceptor Antagonist (+)-Cyclazosin. , 2005 .

[61]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[62]  M. Brede,et al.  Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[63]  M. Gessler,et al.  Placental α2-adrenoceptors control vascular development at the interface between mother and embryo , 2002, Nature Genetics.

[64]  K. Minneman,et al.  Adrenergic Pharmacology: Focus on the Central Nervous System , 2001, CNS Spectrums.

[65]  J. Ballesteros,et al.  Dopamine D4/D2 receptor selectivity is determined by A divergent aromatic microdomain contained within the second, third, and seventh membrane-spanning segments. , 1999, Molecular pharmacology.

[66]  F. Fanelli,et al.  Inverse Agonism and Neutral Antagonism at a 1 aand a 1 b-Adrenergic Receptor Subtypes , 1999 .

[67]  Edward Berger When One Receptor Is Not Enough , 1998 .

[68]  L. Patmore,et al.  [3H]‐RS‐79948‐197, a High Affinity Radioligand Selective for α2‐Adrenoceptor Subtypes , 1997 .

[69]  C. Melchiorre,et al.  Synthesis and biological profile of the enantiomers of [4-(4-amino-6,7-dimethoxyquinazolin-2-yl)-cis-octahydroquinoxalin- 1-yl]furan-2-ylmethanone (cyclazosin), a potent competitive alpha 1B- adrenoceptor antagonist. , 1996, Journal of medicinal chemistry.

[70]  D. Perez,et al.  Identification of critical extracellular loop residues involved in alpha 1-adrenergic receptor subtype-selective antagonist binding. , 1996, Molecular pharmacology.

[71]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[72]  J. Hieble,et al.  α‐ and β‐Adrenoceptors: From the Gene to the Clinic. Part 2. Structure‐Activity Relationships and Therapeutic Applications , 1996 .

[73]  C. Melchiorre,et al.  Receptor binding profile of cyclazosin, a new α1B-adrenoceptor antagonist , 1995 .

[74]  R. Lefkowitz,et al.  International Union of Pharmacology. X. Recommendation for nomenclature of alpha 1-adrenoceptors: consensus update. , 1995, Pharmacological reviews.

[75]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[76]  P. Molinoff,et al.  International Union of Pharmacology nomenclature of adrenoceptors. , 1994, Pharmacological reviews.

[77]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[78]  D. Bylund,et al.  Characterization of the alpha-2C adrenergic receptor subtype in the opossum kidney and in the OK cell line. , 1991, The Journal of pharmacology and experimental therapeutics.

[79]  B. Kobilka,et al.  A point mutation in the seventh hydrophobic domain of the alpha 2 adrenergic receptor increases its affinity for a family of beta receptor antagonists. , 1991, The Journal of biological chemistry.

[80]  T. Branchek,et al.  Cloning, expression, and pharmacological characterization of a human alpha 2B-adrenergic receptor. , 1990, Molecular pharmacology.

[81]  M. Tute,et al.  1,3-Diamino-6,7-dimethoxyisoquinoline Derivatives as Potential α1-Adrenoceptor Antagonists. , 1988 .

[82]  B. Lewis,et al.  2,4-Diamino-6,7-dimethoxyquinazolines. Part 1. 2-(4-(1,4-Benzodioxan-2- ylcarbonyl)piperazin-1-yl) Derivatives as α1-Adrenoceptor Antagonists and Antihypertensive Agents. , 1987 .

[83]  Y. Cheng,et al.  Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. , 1973, Biochemical pharmacology.