A SVM Greek character recogniser

This paper presents a handwritten Greek character recogniser based on Support Vector Machines (SVMs). The recogniser is composed of two modules: the first one is a feature extractor, the second one, the classifier, is performed by means of SVMs. The recogniser, tested on a database of more than 22000 handwritten Greek characters, has shown satisfactory performances. SVMs compare notably better, in terms of recognition rates, with popular neural classifiers, such as Learning Vector Quantisation (LVQ) and Multi-layer Perceptron (MLP).

[1]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[2]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[3]  David G. Stork,et al.  Pattern Classification , 1973 .

[4]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[5]  Anna Maria Colla,et al.  Simple feature extraction for handwritten character recognition , 1995, Proceedings., International Conference on Image Processing.

[6]  Jorma Laaksonen,et al.  LVQ_PAK: The Learning Vector Quantization Program Package , 1996 .

[7]  V. K. Govindan,et al.  Character recognition - A review , 1990, Pattern Recognit..

[8]  Ralf Herbrich,et al.  Learning Kernel Classifiers , 2001 .

[9]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[10]  Nikos Fakotakis,et al.  Slant estimation algorithm for OCR systems , 2001, Pattern Recognit..

[11]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[12]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[13]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[15]  Adnan Amin,et al.  Off-line Arabic character recognition: the state of the art , 1998, Pattern Recognit..

[16]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[17]  Ioannis Pratikakis,et al.  An old greek handwritten OCR system based on an efficient segmentation-free approach , 2007, International Journal of Document Analysis and Recognition (IJDAR).

[18]  Teuvo Kohonen,et al.  Learning vector quantization , 1998 .