Toward an evolvable neuromolecular hardware: a hardware design for a multilevel artificial brain with digital circuits

Abstract A biologically inspired neuromolecular architecture implemented on digital circuits is proposed in this paper. Digital machines and biological systems provide different modes of information processing. The former are designed to be effectively programmable, whereas the latter have self-organizing dynamics. Previously, we developed a multilevel computer model that captures intra- and interneuronal information processing. The experimental results showed that this self-organizing model has long-term evolutionary learning capability that allows it to learn in a continuous manner, and that the function of the system changes as its structure is altered. Malleability and gradual transformability play an important role in facilitating evolutionary learning. The implementation of this model on digital circuits would allow it to perform on a real-time basis and to provide an architectural paradigm for emerging molecular or neuromolecular electronic technologies.

[1]  M. Conrad,et al.  Evolutionary learning circuits. , 1974, Journal of theoretical biology.

[2]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[3]  Michael Conrad,et al.  Neuronal Dynamics and Evolutionary Learning , 1988, Advances in Cognitive Science.

[4]  M Conrad,et al.  [Change of mechanical parameters as a possible means for information processing by the neuron]. , 1982, Biofizika.

[5]  Kenji Toda,et al.  Real-world applications of analog and digital evolvable hardware , 1999, IEEE Trans. Evol. Comput..

[6]  Donald O. Walter,et al.  Self-Organizing Systems , 1987, Life Science Monographs.

[7]  Alex Fraser,et al.  Simulation of Genetic Systems by Automatic Digital Computers I. Introduction , 1957 .

[8]  F. L. Carter Molecular Electronic Devices II , 1987 .

[9]  J. S. F. Barker,et al.  Simulation of Genetic Systems by Automatic Digital Computers , 1958 .

[10]  P. Satir,et al.  Cytoplasmic matrix: old and new questions , 1984, The Journal of cell biology.

[11]  R. D. Goldman,et al.  Intermediate filaments , 1984, The Journal of cell biology.

[12]  M Conrad,et al.  The brain-machine disanalogy. , 1989, Bio Systems.

[13]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[14]  K G Kirby,et al.  Towards an artificial brain. , 1989, Bio Systems.

[15]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[16]  Xin Yao,et al.  The GRD Chip: Genetic Reconfiguration of DSPs for Neural Network Processing , 1999, IEEE Trans. Computers.

[17]  F H Kirkpatrick,et al.  New models of cellular control: membrane cytoskeletons, membrane curvature potential, and possible interactions. , 1979, Bio Systems.

[18]  Moshe Sipper,et al.  Quo Vadis evolvable hardware? , 1999, CACM.

[19]  Xin Yao,et al.  A review of evolutionary artificial neural networks , 1993, Int. J. Intell. Syst..

[20]  M Conrad,et al.  Information processing in molecular systems. , 1972, Currents in modern biology.

[21]  M. Aizawa Molecular electronic devices. , 1988 .

[22]  M Conrad,et al.  Principle of superposition-free memory. , 1977, Journal of theoretical biology.

[23]  Michael Conrad,et al.  Intraneuronal dynamics as a substrate for evolutionary learning , 1986 .

[24]  Judith E. Dayhoff,et al.  Models for molecular computation: conformational automata in the cytoskeleton , 1992, Computer.

[25]  Kunihiko Fukushima,et al.  Neocognitron: A hierarchical neural network capable of visual pattern recognition , 1988, Neural Networks.

[26]  M Conrad,et al.  Microinjection of cyclic nucleotides provides evidence for a diffusional mechanism of intraneuronal control. , 1982, Bio Systems.

[27]  T. Pollard,et al.  Interaction of actin filaments with microtubules , 1984, The Journal of cell biology.

[28]  Michael Conrad,et al.  On design principles for a molecular computer , 1985, CACM.

[29]  Michael Conrad,et al.  Integrated precursor architecture as a framework for molecular computer design , 1993 .

[30]  A. Tamulis,et al.  Selection rules for self-formation in the molecular nanotechnology , 1991 .

[31]  P. Greengard,et al.  Advances in Cyclic Nucleotide Research , 1973 .

[32]  P. J. Werbos,et al.  Backpropagation and neurocontrol: a review and prospectus , 1989, International 1989 Joint Conference on Neural Networks.

[33]  T D Pollard,et al.  The interaction of actin filaments with microtubules and microtubule-associated proteins. , 1982, The Journal of biological chemistry.

[34]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G M Edelman,et al.  Selective Networks and Recognition Automata * , 1984, Annals of the New York Academy of Sciences.

[36]  G. Bloom,et al.  Microtubule-associated proteins: subunits of the cytomatrix , 1984, The Journal of cell biology.

[37]  M Conrad,et al.  Molecular information structures in the brain , 1976, Journal of neuroscience research.

[38]  Golubtsov Kv,et al.  [Study of the metabolic synapse. II. Comparison of the effects of cyclic 3',5'-AMP and 3',5'-GMP]. , 1977 .

[39]  Jong-Chen Chen,et al.  A multilevel neuromolecular architecture that uses the extradimensional bypass principle to facilitate evolutionary learning , 1994 .

[40]  H. Fröhlich,et al.  Evidence for coherent excitation in biological systems , 1983 .

[41]  François Kajzar,et al.  Photoactive Organic Materials , 1996 .

[42]  A. Tamulis,et al.  Quantum chemical investigations of photoactive supermolecules and supermolecules, their self assembly and design of molecular devices , 1993 .

[43]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[44]  Xin Yao,et al.  Promises and challenges of evolvable hardware , 1996, IEEE Trans. Syst. Man Cybern. Part C.

[45]  M. Conrad,et al.  Learning synergy in a multilevel neuronal architecture. , 1994, Bio Systems.

[46]  Hugo de Garis Proceedings of the first NASD/DoD workshop on evolvable hardware , 1999, IEEE Trans. Evol. Comput..

[47]  T D Pollard,et al.  Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. , 1983, The Journal of biological chemistry.

[48]  M. Conrad The lure of molecular computing: While marketable products seem decades away, researchers are crystallizing theories and devices that will give biological organisms the power to compute , 1986, IEEE Spectrum.

[49]  L. Darrell Whitley,et al.  Optimizing Neural Networks Using FasterMore Accurate Genetic Search , 1989, ICGA.

[50]  Takayuki Ito,et al.  Neocognitron: A neural network model for a mechanism of visual pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[51]  Jong-Chen Chen,et al.  Problem Solving with a Perpetual Evolutionary Learning Architecture , 2004, Applied Intelligence.

[52]  John L. Casti,et al.  Real brains: artificial minds , 1987 .

[53]  Matthias Jarke Scenarios for modeling , 1999, CACM.

[54]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[55]  John Daly,et al.  Cyclic Nucleotides in the Nervous System , 1977, Springer US.

[56]  Jong-Chen Chen,et al.  Pattern Categorization and Generalization with a Virtual Neuromolecular Architecture , 1997, Neural Networks.

[57]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[58]  U Gyllensten,et al.  In Molecular Biology and Biotechnology. A comprehensive desk reference. , 1995 .

[59]  Tetsuya Higuchi,et al.  Evolvable hardware chips for industrial applications , 1999, CACM.

[60]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[61]  R. Goldman,et al.  Recent insights into the assembly, dynamics, and function of intermediate filament networks. , 1991, Cell motility and the cytoskeleton.

[62]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[63]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[64]  Charles H. Bennett,et al.  Dissipation-error tradeoff in proofreading. , 1979, Bio Systems.

[65]  M Conrad,et al.  Complementary molecular models of learning and memory. , 1976, Bio Systems.

[66]  T. Kohonen,et al.  A principle of neural associative memory , 1977, Neuroscience.

[67]  N. Sharkey,et al.  Advances in cognitive science , 1988 .

[68]  Michael Conrad,et al.  Combining evolution with credit apportionment: A new learning algorithm for neural nets , 1994, Neural Networks.

[69]  Arvydas Tamulis,et al.  Quantum Mechanical Investigations of Photoactive Molecules, Supermolecules, Supramolecules and Design of Basic Elements of Molecular Computers , 1996 .

[70]  S. Grossberg,et al.  How does a brain build a cognitive code? , 1980, Psychological review.

[71]  Jong-Chen Chen,et al.  Evolutionary learning with a neuromolecular architecture: a biologically motivated approach to computational adaptability , 1997, Soft Comput..

[72]  J C Chen Data differentiation and parameter analysis of a chronic hepatitis B database with an artificial neuromolecular system. , 2000, Bio Systems.

[73]  Xin Yao,et al.  Following the path of evolvable hardware , 1999, CACM.

[74]  M Conrad,et al.  Sequential behavior and stability properties of enzymatic neuron networks. , 1983, Bulletin of mathematical biology.

[75]  Michael Conrad,et al.  Electronic Instabilities in Biological Information Processing , 1991 .

[76]  Xin Yao,et al.  Making use of population information in evolutionary artificial neural networks , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[77]  T D Pollard,et al.  Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins , 1978, The Journal of cell biology.

[78]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[79]  Michael Conrad,et al.  Neuron generator potentials evoked by intracellular injection of cyclic nucleotides and mechanical distension , 1985, Brain Research.