The ab initio limit quartic force field of BH3

The complete quartic force field of BH3 has been converged to the ab initio limit by extrapolation of core‐valence correlation‐consistent basis set series (cc‐pCVXZ, X = T, Q, 5) of all‐electron CCSD(T) (coupled‐cluster singles and doubles with perturbative triples) energy points. Additional computations including full coupled‐cluster treatments through quadruple excitations (CCSDTQ), scalar relativistic effects, and diagonal Born–Oppenheimer corrections (DBOC) were concurrently executed. Within second‐order vibrational perturbation theory (VPT2) our quartic force field yields the fundamental frequencies ν1 = 2502.3 cm−1, ν2 = 1147.2 cm−1, ν3 = 2602.1 cm−1, and ν4 = 1196.5 cm−1, in excellent agreement with observed gas‐phase fundamentals, displaying a mean absolute error of only 0.3 cm−1. Our converged prediction for the equilibrium bond length of BH3 is re = 1.1867 Å. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1106–1112, 2005

[1]  R. Bartlett,et al.  Relativistic effects at the correlated level. An application to interhalogens , 1993 .

[2]  K. Kawaguchi Fourier transform infrared spectroscopy of the BH3 ν3 band , 1992 .

[3]  V. Szalay,et al.  General derivative relations for anharmonic force fields , 1996 .

[4]  Timothy J. Lee,et al.  Accurate ab initio quartic force fields for borane and BeH2 , 1992 .

[5]  Earl L. Muetterties,et al.  Boron Hydride Chemistry , 1975 .

[6]  N. Handy,et al.  The adiabatic approximation , 1996 .

[7]  N. Handy,et al.  The diagonal born-oppenheimer correction for He2+ and F+H2 , 1996 .

[8]  J. Watson Quadratic Coriolis zeta sum rules , 1971 .

[9]  J. L. Dunham The Energy Levels of a Rotating Vibrator , 1932 .

[10]  E. B. Wilson,et al.  Approximate Treatment of the Effect of Centrifugal Distortion on the Rotational Energy Levels of Asymmetric‐Rotor Molecules , 1952 .

[11]  W. D. Allen,et al.  On the ab initio determination of higher-order force constants at nonstationary reference geometries , 1993 .

[12]  D. Papoušek,et al.  Molecular vibrational-rotational spectra , 1982 .

[13]  J. Olsen,et al.  Comparison of full-configuration interaction and coupled-cluster harmonic and fundamental frequencies for BH and HF , 2001 .

[14]  H. Schaefer,et al.  The vibrational frequencies of borane (BH3) : a comparison of high level theoretical results , 1993 .

[15]  Mihály Kállay,et al.  Higher excitations in coupled-cluster theory , 2001 .

[16]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules , 1944 .

[17]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[18]  Christopher S. Johnson,et al.  Characterization of the X̃ 1A’ state of isocyanic acid , 1993 .

[19]  David Feller,et al.  The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water , 1993 .

[20]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[21]  R. F. Porter,et al.  Infrared spectra of the pyrolysis products of borane carbonyl in an argon matrix , 1971 .

[22]  G. Scuseria,et al.  Comparison of coupled-cluster methods which include the effects of connected triple excitations , 1990 .

[23]  J. Watson Vibrational Spectra and Structure , 1977 .

[24]  T. Oka Quadratic ζ-sum rules in symmetric top molecules , 1969 .

[25]  K. Kawaguchi,et al.  Diode laser spectroscopy of the ν3 and ν2 bands of FHF− in 1300 cm−1 region , 1987 .

[26]  Edward F. Valeev,et al.  The diagonal Born–Oppenheimer correction beyond the Hartree–Fock approximation , 2003 .

[27]  H. H. Nielsen The Vibration-Rotation Energies of Molecules , 1951 .

[28]  W. D. Allen,et al.  The anharmonic force field and equilibrium molecular structure of ketene , 1995 .

[29]  L. Henry,et al.  The quartic anharmonic potential function of polyatomic molecules , 1961 .

[30]  W. D. Allen,et al.  Anharmonic force field, vibrational energies, and barrier to inversion of SiH3− , 2000 .

[31]  Henry F. Schaefer,et al.  A systematic study of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher-derivative methods. Linear polyatomic molecules , 1990 .

[32]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[33]  H. Brown,et al.  A NEW TECHNIQUE FOR THE CONVERSION OF OLEFINS INTO ORGANOBORANES AND RELATED ALCOHOLS , 1956 .

[34]  R. Bartlett,et al.  A coupled-cluster and MBPT study of B2H6 and BH3 , 1987 .

[35]  E. Bright Wilson,et al.  The Vibration‐Rotation Energy Levels of Polyatomic Molecules I. Mathematical Theory of Semirigid Asymmetrical Top Molecules , 1936 .

[36]  Mihály Kállay,et al.  Computing coupled-cluster wave functions with arbitrary excitations , 2000 .

[37]  W. C. Ermler Relativistic Effects in Chemistry Part A: Theory and Techniques By Krishnan Balasubramanian (Arizona State University). Wiley Interscience: New York. 1997. xiii + 301 pp. $145.00 (paperback $84.95). ISBN 0-471-30400-X. , 1998 .

[38]  D. Schwenke Variational Calculations of Rovibrational Energy Levels and Transition Intensities for Tetratomic Molecules , 1996 .

[39]  H. Schaefer,et al.  The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet–triplet splitting of CH2 and other molecular effects , 1986 .