QUANTUM STATE ESTIMATION AND LARGE DEVIATIONS
暂无分享,去创建一个
[1] Richard D. Gill,et al. Asymptotics in quantum statistics , 2001, math/0405571.
[2] E. Bagan,et al. Collective versus local measurements in a qubit mixed-state estimation , 2003, quant-ph/0307199.
[3] B. Simon. Representations of finite and compact groups , 1995 .
[4] R. R. Bahadur. Rates of Convergence of Estimates and Test Statistics , 1967 .
[5] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[6] C. Macchiavello,et al. Optimal state estimation for d-dimensional quantum systems☆ , 1998, quant-ph/9812016.
[7] R. Werner,et al. Estimating the spectrum of a density operator , 2001, quant-ph/0102027.
[8] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[9] M. Hayashi. Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation , 2002, quant-ph/0202003.
[10] V. Paulsen. Completely bounded maps and dilations , 1987 .
[11] Massar,et al. Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.
[12] Srinivasa R. S. Varadhan,et al. Asymptotic probabilities and differential equations , 1966 .
[13] Dietmar G. Fischer,et al. Estimating mixed quantum states , 2000, quant-ph/0005090.
[14] R. R. Bahadur. Some Limit Theorems in Statistics , 1987 .
[15] C. Helstrom. Quantum detection and estimation theory , 1969 .
[16] Masahito Hayashi,et al. Quantum universal variable-length source coding , 2002, quant-ph/0202001.
[17] J. Cirac,et al. Optimal Purification of Single Qubits , 1998, quant-ph/9812075.
[18] D. Bruß,et al. Optimal universal and state-dependent quantum cloning , 1997, quant-ph/9705038.
[19] Tomohiro Ogawa,et al. Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.
[20] R. R. Bahadur. 1. Some Limit Theorems in Statistics , 1971 .
[21] R. Ellis,et al. Entropy, large deviations, and statistical mechanics , 1985 .
[22] Klaus Jänich. Differenzierbare G-Mannigfaltigkeiten , 1968 .
[23] V. Buzek,et al. Universal Algorithm for Optimal Estimation of Quantum States from Finite Ensembles via Realizable Ge , 1997, quant-ph/9707028.
[24] J. Lynch,et al. A weak convergence approach to the theory of large deviations , 1997 .
[25] Keiji matsumoto. A new approach to the Cramér-Rao-type bound of the pure-state model , 2002 .
[26] Asymptotic estimation theory for a finite dimensional pure state model , 1997, quant-ph/9704041.
[27] W. Bryc. Large Deviations by the Asymptotic Value Method , 1990 .
[28] Max L. Warshauer,et al. Lecture Notes in Mathematics , 2001 .
[29] Robert Alicki,et al. Symmetry properties of product states for the system of N n‐level atoms , 1988 .
[30] P. Pascual,et al. OPTIMAL MINIMAL MEASUREMENTS OF MIXED STATES , 1999 .
[31] Operator algebras and conformal field theory III. Fusion of positive energy representations of LSU(N) using bounded operators , 1998, math/9806031.
[32] P. Pascual,et al. Minimal Optimal Generalized Quantum Measurements , 1998 .
[33] Masahito Hayashi. Asymptotic theory of quantum statistical inference : selected papers , 2005 .
[34] The Rate of Optimal Purification Procedures , 1999, quant-ph/9910124.
[35] D. P. Zhelobenko. Compact Lie Groups and Their Representations , 1973 .
[36] A. Wassermann. Operator Algebras and Conformal Field Theory , 1998 .
[37] F. Hiai,et al. The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .
[38] N. Duffield. A large deviation principle for the reduction of product representations , 1990 .
[39] R. Gill,et al. State estimation for large ensembles , 1999, quant-ph/9902063.