QUANTUM STATE ESTIMATION AND LARGE DEVIATIONS

In this paper we propose a method to estimate the density matrix ρ of a d-level quantum system by measurements on the N-fold system in the joint state ρ⊗N. The scheme is based on covariant observables and representation theory of unitary groups and it extends previous results concerning pure states and the estimation of the spectrum of ρ. We show that it is consistent (i.e. the original input state ρ is recovered with certainty if N → ∞), analyze its large deviation behavior, and calculate explicitly the corresponding rate function which describes the exponential decrease of error probabilities in the limit N → ∞. Finally, we discuss the question whether the proposed scheme provides the fastest possible decay of error probabilities.

[1]  Richard D. Gill,et al.  Asymptotics in quantum statistics , 2001, math/0405571.

[2]  E. Bagan,et al.  Collective versus local measurements in a qubit mixed-state estimation , 2003, quant-ph/0307199.

[3]  B. Simon Representations of finite and compact groups , 1995 .

[4]  R. R. Bahadur Rates of Convergence of Estimates and Test Statistics , 1967 .

[5]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[6]  C. Macchiavello,et al.  Optimal state estimation for d-dimensional quantum systems☆ , 1998, quant-ph/9812016.

[7]  R. Werner,et al.  Estimating the spectrum of a density operator , 2001, quant-ph/0102027.

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  M. Hayashi Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation , 2002, quant-ph/0202003.

[10]  V. Paulsen Completely bounded maps and dilations , 1987 .

[11]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[12]  Srinivasa R. S. Varadhan,et al.  Asymptotic probabilities and differential equations , 1966 .

[13]  Dietmar G. Fischer,et al.  Estimating mixed quantum states , 2000, quant-ph/0005090.

[14]  R. R. Bahadur Some Limit Theorems in Statistics , 1987 .

[15]  C. Helstrom Quantum detection and estimation theory , 1969 .

[16]  Masahito Hayashi,et al.  Quantum universal variable-length source coding , 2002, quant-ph/0202001.

[17]  J. Cirac,et al.  Optimal Purification of Single Qubits , 1998, quant-ph/9812075.

[18]  D. Bruß,et al.  Optimal universal and state-dependent quantum cloning , 1997, quant-ph/9705038.

[19]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[20]  R. R. Bahadur 1. Some Limit Theorems in Statistics , 1971 .

[21]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[22]  Klaus Jänich Differenzierbare G-Mannigfaltigkeiten , 1968 .

[23]  V. Buzek,et al.  Universal Algorithm for Optimal Estimation of Quantum States from Finite Ensembles via Realizable Ge , 1997, quant-ph/9707028.

[24]  J. Lynch,et al.  A weak convergence approach to the theory of large deviations , 1997 .

[25]  Keiji matsumoto A new approach to the Cramér-Rao-type bound of the pure-state model , 2002 .

[26]  Asymptotic estimation theory for a finite dimensional pure state model , 1997, quant-ph/9704041.

[27]  W. Bryc Large Deviations by the Asymptotic Value Method , 1990 .

[28]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[29]  Robert Alicki,et al.  Symmetry properties of product states for the system of N n‐level atoms , 1988 .

[30]  P. Pascual,et al.  OPTIMAL MINIMAL MEASUREMENTS OF MIXED STATES , 1999 .

[31]  Operator algebras and conformal field theory III. Fusion of positive energy representations of LSU(N) using bounded operators , 1998, math/9806031.

[32]  P. Pascual,et al.  Minimal Optimal Generalized Quantum Measurements , 1998 .

[33]  Masahito Hayashi Asymptotic theory of quantum statistical inference : selected papers , 2005 .

[34]  The Rate of Optimal Purification Procedures , 1999, quant-ph/9910124.

[35]  D. P. Zhelobenko Compact Lie Groups and Their Representations , 1973 .

[36]  A. Wassermann Operator Algebras and Conformal Field Theory , 1998 .

[37]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[38]  N. Duffield A large deviation principle for the reduction of product representations , 1990 .

[39]  R. Gill,et al.  State estimation for large ensembles , 1999, quant-ph/9902063.