Application of the virial theorem for improving eigenvalue calculations of multiparticle systems

Abstract The virial theorem is a fundamental property for multiparticle systems in quantum mechanics, and offers an elegant relationship between kinetic and potential energies of quantum states. In this paper, we study applications of the virial theorem for improving eigenvalue calculations of multiparticle systems. We propose the virial steepest descent scheme and the two-point linear extrapolation , to improve the accuracy of such eigenvalue calculations through post-processing eigenvalue data obtained from standard methods. Mathematical analysis of both methods is presented. Examples are included to illustrate the efficiency of both methods.

[1]  Ferenc Szenkovits,et al.  The two-body problem with generalized Lennard-Jones potential , 2011 .

[2]  Werner Kutzelnigg,et al.  Theory of the expansion of wave functions in a gaussian basis , 1994 .

[3]  George W. Collins,et al.  The virial theorem in stellar astrophysics , 1978 .

[4]  J. Killingbeck,et al.  A polynomial perturbation problem , 1978 .

[5]  O. Ya. Savchenko Estimates of the eigenvalues of the Schrödinger equation for a system of interacting particles. II , 1978 .

[6]  Weiying Zheng,et al.  Finite Element Approximations to the Discrete Spectrum of the Schrödinger Operator with the Coulomb Potential , 2004, SIAM J. Numer. Anal..

[7]  Per-Olov Löwdin,et al.  Scaling problem, virial theorem, and connected relations in quantum mechanics , 1959 .

[8]  B. N. Finkelstein,et al.  Über den Virialsatz in der Wellenmechanik , 1928 .

[9]  Reinhold Schneider,et al.  Error estimates for Hermite and even-tempered Gaussian approximations in quantum chemistry , 2014, Numerische Mathematik.

[10]  C. Quigg,et al.  Quantum Mechanics with Applications to Quarkonium , 1979 .

[11]  Adel F. Antippa,et al.  Analytic solution of the Schrödinger equation for the Coulomb-plus-linear potential. I. The wave functions , 2005 .

[12]  Yukio Kagawa,et al.  Finite Element Approach to the Vibrational Schrödinger Equation of Diatomic Species , 1976 .

[13]  V. Fock,et al.  Bemerkung zum Virialsatz , 1930 .

[14]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[15]  M Znojil,et al.  The Hill determinant approach to the Coulomb plus linear confinement , 1987 .

[16]  Claude Brezinski,et al.  Extrapolation methods - theory and practice , 1993, Studies in computational mathematics.

[17]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[18]  Max Born,et al.  Zur Quantenmechanik. II , 2022 .

[19]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[20]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .

[21]  Alain Perronnet,et al.  Visualization and dimensional scaling for some three-body problems in atomic and molecular quantum mechanics , 2008 .

[22]  Eugene N. Parker,et al.  THE TENSOR VIRIAL EQUATIONS , 1954 .

[23]  Harry Pollard,et al.  A sharp form of the Virial theorem , 1964 .

[24]  P. Ledoux,et al.  On the Radial Pulsation of Gaseous Stars , 1945 .

[25]  Douglas E. Magnoli,et al.  Obtaining self–consistent wave functions which satisfy the virial theorem , 1982 .

[26]  G. Burton Sobolev Spaces , 2013 .

[27]  R. Clausius,et al.  XVI. On a mechanical theorem applicable to heat , 1870 .

[28]  W. Heisenberg,et al.  Zur Quantenmechanik. II. , 1926 .

[29]  Sengupta,et al.  Family of exact solutions for the Coulomb potential perturbed by a polynomial in r. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[30]  Joachim Weidmann,et al.  The virial theorem and its application to the spectral theory of Schrödinger operators , 1967 .