Covariate Shift by Kernel Mean Matching

This chapter contains sections titled: Introduction, Sample Reweighting, Distribution Matching, Risk Estimates, The Connection to Single Class Support Vector Machines, Experiments, Conclusion, Appendix: Proofs

[1]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[2]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[3]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[4]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[5]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[6]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[7]  David Barber,et al.  Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[9]  H. Shimodaira,et al.  Improving predictive inference under covariate shift by weighting the log-likelihood function , 2000 .

[10]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[11]  J. Welsh,et al.  Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. , 2001, Cancer research.

[12]  S. Dhanasekaran,et al.  Delineation of prognostic biomarkers in prostate cancer , 2001, Nature.

[13]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[14]  Carsten O. Peterson,et al.  Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. , 2001, Cancer research.

[15]  R. Spang,et al.  Predicting the clinical status of human breast cancer by using gene expression profiles , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Ingo Steinwart,et al.  Support Vector Machines are Universally Consistent , 2002, J. Complex..

[17]  Shahar Mendelson,et al.  A Few Notes on Statistical Learning Theory , 2002, Machine Learning Summer School.

[18]  E. Lander,et al.  Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.

[19]  Ben Taskar,et al.  Max-Margin Markov Networks , 2003, NIPS.

[20]  Ji Zhu,et al.  A Method for Inferring Label Sampling Mechanisms in Semi-Supervised Learning , 2004, NIPS.

[21]  Yi Lin,et al.  Support Vector Machines for Classification in Nonstandard Situations , 2002, Machine Learning.

[22]  Masashi Sugiyama,et al.  Input-dependent estimation of generalization error under covariate shift , 2005 .

[23]  Thomas Hofmann,et al.  Kernel Methods for Missing Variables , 2005, AISTATS.

[24]  Roland Eils,et al.  Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes , 2005, BMC Bioinformatics.

[25]  Miroslav Dudík,et al.  Correcting sample selection bias in maximum entropy density estimation , 2005, NIPS.

[26]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[27]  Klaus-Robert Müller,et al.  Importance-Weighted Cross-Validation for Covariate Shift , 2006, DAGM-Symposium.

[28]  Roger Fletcher,et al.  New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds , 2006, Math. Program..

[29]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[30]  Bernhard Schölkopf,et al.  Correcting Sample Selection Bias by Unlabeled Data , 2006, NIPS.

[31]  Bernhard Schölkopf,et al.  Kernel Measures of Conditional Dependence , 2007, NIPS.

[32]  Motoaki Kawanabe,et al.  Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation , 2007, NIPS.

[33]  Klaus-Robert Müller,et al.  Covariate Shift Adaptation by Importance Weighted Cross Validation , 2007, J. Mach. Learn. Res..