Molecular logic gates using surface-enhanced Raman-scattered light.

A voltage-activated molecular-plasmonics device was created to demonstrate molecular logic based on resonant surface-enhanced Raman scattering (SERS). SERS output was achieved by a combination of chromophore-plasmon coupling and surface adsorption at the interface between a solution and a gold nanodisc array. The chromophore was created by the self-assembly of a supramolecular complex with a redox-active guest molecule. The guest was reversibly oxidized at the gold surface to the +1 and +2 oxidation states, revealing spectra that were reproduced by calculations. State-specific SERS features enabled the demonstration of a multigate logic device with electronic input and optical output.

[1]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[2]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[3]  Renato Bozio,et al.  Infrared and Raman spectra of TTF and TTF-d4 , 1977 .

[4]  H. Stolz,et al.  Raman scattering of TTF-TCNQ and related compounds , 1977 .

[5]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[6]  Renato Bozio,et al.  Vibrational spectroscopy of molecular constituents of one‐dimensional organic conductors. Tetrathiofulvalene (TTF), TTF+, and (TTF+)2 dimer , 1979 .

[7]  G. A. Candela,et al.  Copper and Gold Metallotetrathiaethylenes , 1981 .

[8]  E. Heller,et al.  Polyatomic Raman scattering for general harmonic potentials , 1982 .

[9]  D. Weitz,et al.  Charge transfer from tetrathiafulvalene to silver and gold surfaces studied by surface-enhanced Raman scattering , 1983 .

[10]  T. Lu,et al.  In situ Raman spectra of the three redox forms of heptylviologen at platinum and silver electrodes: counterion effects , 1987 .

[11]  David J. Williams,et al.  Cyclobis(paraquat‐p‐phenylene). A Tetracationic Multipurpose Receptor , 1988 .

[12]  David J. Williams,et al.  The complexation of tetrathiafulvalene by cyclobis(Paraquat-p-phenylene) , 1991 .

[13]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .

[14]  C. McCoy,et al.  A molecular photoionic AND gate based on fluorescent signalling , 1993, Nature.

[15]  David J. Williams,et al.  IMPROVED TEMPLATE-DIRECTED SYNTHESIS OF CYCLOBIS(PARAQUAT-P-PHENYLENE) , 1996 .

[16]  Leonid M. Goldenberg,et al.  A Redox-Active Tetrathiafulvalene [2]Pseudorotaxane: Spectroelectrochemical and Cyclic Voltammetric Studies of the Highly-Reversible Complexation/Decomplexation Process , 1997 .

[17]  J. Fraser Stoddart,et al.  Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine , 1997 .

[18]  J. Fraser Stoddart,et al.  Electrochemically Induced Molecular Motions in Pseudorotaxanes: A Case of Dual‐Mode (Oxidative and Reductive) Dethreading , 1997 .

[19]  J. O. Jeppesen,et al.  Pyrrolo Annelated Tetrathiafulvalenes: The Parent Systems , 1999 .

[20]  David J. Williams,et al.  A Three-Pole Supramolecular Switch† , 1999 .

[21]  V. T. Joy,et al.  SERS studies on tetrathiafulvalene, diphenyltetrathiafulene and octahydrodibenzotetrathiafulvalene , 2000 .

[22]  Becher,et al.  Pyrrolo-annelated tetrathiafulvalenes: the parent systems , 2000, The Journal of organic chemistry.

[23]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[24]  V. Rotello,et al.  An investigation of the complexation behaviour of structurally modified tetrathiafulvalene derivatives with the electron deficient cyclophane cyclobis(paraquat-p-phenylene) , 2001 .

[25]  J F Stoddart,et al.  Molecular-based electronically switchable tunnel junction devices. , 2001, Journal of the American Chemical Society.

[26]  José L. Segura,et al.  New Concepts in Tetrathiafulvalene Chemistry. , 2001, Angewandte Chemie.

[27]  J. F. Stoddart,et al.  Binding studies between tetrathiafulvalene derivatives and cyclobis(paraquat-p-phenylene). , 2001, The Journal of organic chemistry.

[28]  F. Raymo Digital processing and communication with molecular switches , 2002 .

[29]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  J. O. Jeppesen,et al.  Pyrrolo‐Tetrathiafulvalenes and Their Applications in Molecular and Supramolecular Chemistry , 2003 .

[31]  Xiang Zhang,et al.  The metastability of an electrochemically controlled nanoscale machine on gold surfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  Hsian-Rong Tseng,et al.  Molecular-mechanical switch-based solid-state electrochromic devices. , 2004, Angewandte Chemie.

[33]  A. P. de Silva,et al.  Molecular-scale logic gates. , 2004, Chemistry.

[34]  D. A. Stuart,et al.  Surface Enhanced Raman Spectroscopy: New Materials, Concepts, Characterization Tools, and Applications , 2005 .

[35]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[36]  Amar H Flood,et al.  Quantifying the working stroke of tetrathiafulvalene-based electrochemically-driven linear motor-molecules. , 2006, Chemical communications.

[37]  J. Fraser Stoddart,et al.  Models of charge transport and transfer in molecular switch tunnel junctions of bistable catenanes and rotaxanes , 2006 .

[38]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[39]  J. F. Stoddart,et al.  Functionally rigid bistable [2]rotaxanes. , 2007, Journal of the American Chemical Society.

[40]  Mark L Brongersma,et al.  A nonvolatile plasmonic switch employing photochromic molecules. , 2008, Nano letters.

[41]  N. Katsonis,et al.  Nano-electronic switches , 2009 .

[42]  Ying-Wei Yang,et al.  Dual-controlled nanoparticles exhibiting AND logic. , 2009, Journal of the American Chemical Society.

[43]  J. O. Jeppesen,et al.  Determination of binding strengths of a host-guest complex using resonance Raman scattering. , 2009, The journal of physical chemistry. A.

[44]  Paul S Weiss,et al.  Active molecular plasmonics: controlling plasmon resonances with molecular switches. , 2009, Nano letters.

[45]  D. Silverstein,et al.  Understanding the Resonance Raman Scattering of Donor-Acceptor Complexes using Long-Range Corrected DFT. , 2010, Journal of chemical theory and computation.

[46]  J. O. Jeppesen,et al.  Turning on resonant SERRS using the chromophore-plasmon coupling created by host-guest complexation at a plasmonic nanoarray. , 2010, Journal of the American Chemical Society.