Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications

We report a simple method for the synthesis of ultra-fine Eu(3+)-doped yttria (Y(2)O(3)) nanophosphors with an average diameter of approximately 5 nm for development of a transparent colloid that could be used as a luminescent security ink. This has been achieved by suitably substituting Eu(3+) ions at the favorable C(2) symmetry sites of Y(3+) ions and quantum mechanically confining the growth of the nanophosphor using a novel acid-catalyzed sol-gel technique. This is one of the few reports that depict the development of a transparent aqueous-stable Y(2)O(3):Eu(3+) colloidal solution for strategic applications related to security codes. High resolution transmission electron microscopy images showed excellent lattice fringes that in turn support the presence of better crystal quality and enhanced photoluminescence (PL) emission from the Y(1.9)O(3)Eu(0.1)(3+) nanophosphor system. Time resolved emission spectroscopy measurement indicated a PL decay time in the range of a few milliseconds, suitable for making luminescent security ink and other advanced applications in optoelectronic devices and bio-labeling.

[1]  John R. Morris,et al.  Adsorption and Decomposition of Dimethyl Methylphosphonate on Y2O3 Nanoparticles , 2007 .

[2]  Lei Yang,et al.  Synthesis of Eu3+ doped Y2O3 nanotube arrays through an electric field-assisted deposition method , 2007 .

[3]  Houtong Chen,et al.  Optical properties of nanocrystalline Y2O3:Eu depending on its odd structure. , 2003, Journal of colloid and interface science.

[4]  Katharina Landfester,et al.  Inkjet printed surface cell light-emitting devices from a water-based polymer dispersion , 2008 .

[5]  Atsushi Takano,et al.  Upconversion Luminescence Properties of Y 2 O 3 Nanocrystals Doped with Trivalent Rare-Earth Ions , 2005 .

[6]  M. Haase,et al.  Liquid-Phase Synthesis of Doped Nanoparticles: Colloids of Luminescing LaPO4:Eu and CePO4:Tb Particles with a Narrow Particle Size Distribution , 2000 .

[7]  T. Hirai,et al.  Preparation of Y2O3:Yb,Er Infrared-to-Visible Conversion Phosphor Fine Particles Using an Emulsion Liquid Membrane System , 2002 .

[8]  R. Tidecks,et al.  CHEMICAL VAPOR SYNTHESIS AND LUMINESCENCE PROPERTIES OF NANOCRYSTALLINE CUBIC Y2O3:EU , 1999 .

[9]  T. Kushida,et al.  Transition mechanisms and spectral shapes of the 5D0-7F0 line of Eu3+ and Sm2+ in solids , 2002 .

[10]  W. Qin,et al.  Upconversion luminescence properties of Y2O3 : Yb3+, Er3+ nanostructures , 2006 .

[11]  Quan Li,et al.  Hydrothermal Synthesis of Rare Earth (Tb, Y) Hydroxide and Oxide Nanotubes , 2003 .

[12]  Y. Qian,et al.  Synthesis of yttrium hydroxide and oxide nanotubes , 2003 .

[13]  A. Speghini,et al.  Enhancement of Red Emission (4F9/2 → 4I15/2) via Upconversion in Bulk and Nanocrystalline Cubic Y2O3:Er3+ , 2002 .

[14]  Jing Li,et al.  Hydrothermal synthesis of Er-doped yttria nanorods with enhanced red emission via upconversion , 2007 .

[15]  A. Speghini,et al.  Optical spectroscopy of nanocrystalline cubic Y2O3:Er3+ obtained by combustion synthesis , 2000 .

[16]  Hari Singh Nalwa,et al.  Encyclopedia of nanoscience and nanotechnology , 2011 .

[17]  Xun Wang,et al.  Rare-Earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties. , 2003, Chemistry.

[18]  John L. Hutchison,et al.  Luminescence Properties of Nanocrystalline Y2O3:Eu , 2001 .

[19]  Hergen Eilers,et al.  Synthesis and characterization of nanophase yttria co-doped with erbium and ytterbium , 2006 .

[20]  W. Strek,et al.  Size effects on optical properties of Lu2O3:Eu3+ nanocrystallites , 2002 .

[21]  Hong Zhanglian,et al.  Preparation and Luminescence Properties of Y2O3: Eu3+ Nanorods via Post Annealing Process , 2006 .

[22]  H. Güdel,et al.  Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor , 2005 .

[23]  L. Ozawa,et al.  The Effect of Exciting Wavelength on Optimum Activator Concentration , 1971 .

[24]  C. Feldmann,et al.  Transparent luminescent layers via ionic liquid-based approach to LaPO4:RE (RE = Ce, Tb, Eu) dispersions , 2007 .

[25]  Yungang Zhang,et al.  Synthesis and luminescence of europium doped yttria nanophosphors via a sucrose-templated combustion method , 2006 .

[26]  Baochang Cheng,et al.  A novel synthesis route to Y2O3:Eu nanotubes , 2004 .

[27]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[28]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[29]  Y. Do,et al.  Optical properties of sol–gel derived Y2O3:Eu3+ thin-film phosphors for display applications , 2007 .

[30]  D. Buttry,et al.  Electrochemical Synthesis of Yttrium Oxide Nanotubes , 2006 .

[31]  Lidong Chen,et al.  Upconversion Luminescence in Er3+ Doped and Yb3+/Er3+ Codoped Yttria Nanocrystalline Powders , 2004 .

[32]  Kang L. Wang,et al.  Synthesis and Luminescence Properties of Erbium-Doped Y2O3 Nanotubes , 2007 .

[33]  Hiroyuki Nakamura,et al.  Synthesis of Well‐Dispersed Y2O3:Eu Nanocrystals and Self‐Assembled Nanodisks Using a Simple Non‐hydrolytic Route , 2005 .

[34]  J. Silver,et al.  The Effect of Particle Morphology and Crystallite Size on the Upconversion Luminescence Properties of Erbium and Ytterbium Co-doped Yttrium Oxide Phosphors , 2001 .