Automatic statistical volume element modeling based on the unified topology model

Abstract Needs for new particle based heterogeneous materials as led to the development of many Statistical Volume Element (SVE) modeling schemes tailored to specific shapes of particles or meshing procedures. To generalize the numerical analysis of particle filled SVEs, a modeling methodology based on the Unified Topology Model (UTM) is proposed. Using the concept of Boundary Representation (BRep) and a modified Random Sequential Adsorption (RSA) algorithm, the geometry of a Statistical Volume Element (SVE) can be generated automatically with any shape of particles. Using an integration of Computer-Aided Design (CAD) and mesh tools, a mesh size map is constructed with the objective of minimizing the number of mesh elements while preserving quality of the discretization. The SVE is meshed using proven CAD model meshing algorithms for a robust and reliable result. Simulation and post processing are carried out automatically, without any user interaction. To illustrate the potential of this new method, a short glass fiber / epoxy matrix composite is modeled with spherical and elongated cylindrical particles.

[1]  Christophe Geuzaine,et al.  Robust untangling of curvilinear meshes , 2013, J. Comput. Phys..

[2]  A. A. Gusev Representative volume element size for elastic composites: A numerical study , 1997 .

[3]  Jean-Christophe Cuillière A direct method for the automatic discretization of 3D parametric curves , 1997, Comput. Aided Des..

[4]  Assimina A. Pelegri,et al.  Numerical generation of a random chopped fiber composite RVE and its elastic properties , 2008 .

[5]  Qiang Liu,et al.  3D numerical simulation for the elastic properties of random fiber composites with a wide range of fiber aspect ratios , 2014 .

[6]  Anthony Gravouil,et al.  Fatigue crack propagation: In situ visualization using X-ray microtomography and 3D simulation using the extended finite element method , 2006 .

[7]  Martin Lévesque,et al.  Random generation of periodic hard ellipsoids based on molecular dynamics: A computationally-efficient algorithm , 2013, J. Comput. Phys..

[8]  Harm Askes,et al.  Representative volume: Existence and size determination , 2007 .

[9]  Generation of the representative volume elements of composite materials with misaligned inclusions , 2018, Composite Structures.

[10]  Jean-Christophe Cuillière,et al.  A new approach to automatic and a priori mesh adaptation around circular holes for finite element analysis , 2016, Comput. Aided Des..

[11]  Y. Zheng,et al.  Automated modeling of random inclusion composites , 2012, Engineering with Computers.

[12]  Ming Huang,et al.  X-ray tomography image-based reconstruction of microstructural finite element mesh models for heterogeneous materials , 2013 .

[13]  Jean-Christophe Cuillière,et al.  Integration of CAD, FEA and Topology Optimization through a Unified Topological Model , 2014 .

[14]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[15]  Reinaldo Rodríguez-Ramos,et al.  Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles , 2007 .

[16]  L. Gu,et al.  Prediction of the thermomechanical behavior of particle-reinforced metal matrix composites , 2013 .

[17]  Assimina A. Pelegri,et al.  Analysis of 3D random chopped fiber reinforced composites using FEM and random sequential adsorption , 2008 .

[18]  Aki Kallonen,et al.  Analysis of short fibres orientation in steel fibre-reinforced concrete (SFRC) by X-ray tomography , 2013, Journal of Materials Science.

[19]  T. Kanit,et al.  Effect of reinforcement shape on physical properties and representative volume element of particles-reinforced composites: Statistical and numerical approaches , 2015 .

[20]  Javier Segurado,et al.  A numerical approximation to the elastic properties of sphere-reinforced composites , 2002 .

[21]  John M. Boone,et al.  Development of a micromechanical finite element model from computed tomography images for shear modulus simulation of asphalt mixtures , 2012 .

[22]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[23]  Nikhilesh Chawla,et al.  Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation , 2005 .

[24]  M. Ostoja-Starzewski,et al.  On the Size of RVE in Finite Elasticity of Random Composites , 2006 .

[25]  Laurent Delannay,et al.  Homogenization of elasto-plastic composites coupled with a nonlinear finite element analysis of the equivalent inclusion problem , 2010 .

[26]  Ulrich Gabbert,et al.  Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites , 2007 .

[27]  Jean-Christophe Cuillière,et al.  Automatic construction of structural CAD models from 3D topology optimization , 2017 .

[28]  Dominique Jeulin,et al.  Towards gigantic RVE sizes for 3D stochastic fibrous networks , 2014 .

[29]  Helmut J. Böhm,et al.  Effects of particle shape on the macroscopic and microscopic linear behaviors of particle reinforced composites , 2012 .

[30]  Javier Segurado,et al.  Computational micromechanics of composites: The effect of particle spatial distribution , 2006 .

[31]  Steven J. Owen,et al.  Hexahedral Mesh Generation for Computational Materials Modeling , 2017 .

[32]  Martin Lévesque,et al.  A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites , 2012 .

[33]  Jean-Christophe Cuillière,et al.  “What-if” scenarios towards virtual assembly-state mounting for non-rigid parts inspection using permissible loads , 2018, The International Journal of Advanced Manufacturing Technology.

[34]  Chao Zhang,et al.  Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution , 2016, Materials.

[35]  J. Montesano,et al.  A new approach to rapidly generate random periodic representative volume elements for microstructural assessment of high volume fraction composites , 2018, Materials & Design.

[36]  P. George,et al.  Mesh Generation: Application to Finite Elements , 2007 .

[37]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[38]  Konrad Schneider,et al.  Automatic three-dimensional geometry and mesh generation of periodic representative volume elements for matrix-inclusion composites , 2016, Adv. Eng. Softw..

[39]  Wenlong Tian,et al.  Representative volume element for composites reinforced by spatially randomly distributed discontinuous fibers and its applications , 2015 .

[40]  Shuguang Li,et al.  Representative volume elements for discontinuous carbon fibre composites – Part 2: Determining the critical size , 2012 .

[41]  Jean-Christophe Cuillière An adaptive method for the automatic triangulation of 3D parametric surfaces , 1998, Comput. Aided Des..

[42]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[43]  Javier Segurado,et al.  A numerical investigation of the effect of particle clustering on the mechanical properties of composites , 2003 .

[44]  H. Böhm,et al.  Effects of particle shape on the thermoelastoplastic behavior of particle reinforced composites , 2016 .

[45]  Helmut J. Böhm,et al.  Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements , 2002 .

[46]  Suresh G. Advani,et al.  The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites , 1987 .

[47]  David Moxey,et al.  Curvilinear mesh generation using a variational framework , 2017, Comput. Aided Des..