Parametric temporal logic for “model measuring”

We extend the standard model checking paradigm of linear temporal logic, LTL, to a “model measuring” paradigm where one can obtain more quantitative information beyond a “Yes/No” answer. For this purpose, we define a <italic>parametric temporal logic</italic>, PLTL, which allows statements such as “a request <italic>p</italic> is followed in at most <italic>x</italic> steps by a response <italic>q</italic>,” where <italic>x</italic> is a free variable. We show how one can, given a formula ***(<italic>x<subscrpt>1</subscrpt>...,x<subsccrpt>k</subscrpt></italic>) of PLTL and a system model <italic>K</italic> satisfies the property ***, but if so find valuations which satisfy various optimality criteria. In particular, we present algorithms for finding valuations which minimize (or maximize) the maximum (or minimum) of all parameters. Theses algorithms exhibit the same PSPACE complexity as LTL model checking. We show that our choice of syntax for PLTL lies at the threshold of decidability for parametric temporal logics, in that several natural extensions have undecidable “model measuring” problems.

[1]  Thomas A. Henzinger,et al.  Real-time logics: complexity and expressiveness , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[2]  E. Allen Emerson,et al.  Parametric quantitative temporal reasoning , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[3]  T. Henzinger The Beneets of Relaxing Punctuality , 1996 .

[4]  Thomas A. Henzinger,et al.  Real-Time Logics: Complexity and Expressiveness , 1993, Inf. Comput..

[5]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[6]  Thomas A. Henzinger,et al.  Parametric real-time reasoning , 1993, STOC.

[7]  Sérgio Vale Aguiar Campos,et al.  Selective Quantitative Analysis and Interval Model Checking: Verifying Different Facets of a System , 1996, CAV.

[8]  Sérgio Vale Aguiar Campos,et al.  Selective Quantitative Analysis and Interval Model Checking: Verifying Different Facets of a System , 1996, Formal Methods Syst. Des..

[9]  Farn Wang Parametric Timing Analysis for Real-Time Systems , 1996, Inf. Comput..

[10]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[11]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[12]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[13]  Rajeev Alur,et al.  Parametric Temporal Logic for "Model Measuring" , 1999, ICALP.

[14]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[15]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[16]  Thomas A. Henzinger,et al.  The benefits of relaxing punctuality , 1991, PODC '91.

[17]  Amir Pnueli,et al.  Checking that finite state concurrent programs satisfy their linear specification , 1985, POPL.

[18]  Mihalis Yannakakis,et al.  Minimum and maximum delay problems in real-time systems , 1991, Formal Methods Syst. Des..

[19]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..