On the Number of Maximum Empty Boxes Amidst n Points
暂无分享,去创建一个
[1] J. Mark Keil,et al. The Mono- and Bichromatic Empty Rectangle and Square Problems in All Dimensions , 2010, LATIN.
[2] J. Mark Keil,et al. The Bichromatic Rectangle Problem in High Dimensions , 2009, CCCG.
[3] Alok Aggarwal,et al. Geometric applications of a matrix-searching algorithm , 1987, SCG '86.
[4] Alok Aggarwal,et al. Applications of generalized matrix searching to geometric algorithms , 1990, Discret. Appl. Math..
[5] Alok Aggarwal,et al. Fast algorithms for computing the largest empty rectangle , 1987, SCG '87.
[7] Haim Kaplan,et al. Efficient Colored Orthogonal Range Counting , 2008, SIAM J. Comput..
[8] Micha Sharir,et al. Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 1989, J. Comb. Theory A.
[9] Adrian Dumitrescu,et al. Perfect vector sets, properly overlapping partitions, and largest empty box , 2016, ArXiv.
[10] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[11] H. Davenport,et al. A Combinatorial Problem Connected with Differential Equations , 1965 .
[12] Renée J. Miller,et al. Mining for empty spaces in large data sets , 2003, Theor. Comput. Sci..
[13] Adrian Dumitrescu,et al. On the Largest Empty Axis-Parallel Box Amidst n Points , 2009, Algorithmica.
[14] Adrian Dumitrescu,et al. Computational Geometry Column 60 , 2014, SIGA.
[15] J. Matousek,et al. Geometric Discrepancy: An Illustrated Guide , 2009 .
[16] J. Hammersley. MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .
[17] John Augustine,et al. Querying for the Largest Empty Geometric Object in a Desired Location , 2010, 1004.0558.
[18] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[19] Günter Rote,et al. Triangles of Extremal Area or Perimeter in a Finite Planar Point Set , 2001, Discret. Comput. Geom..
[20] Subhas C. Nandy,et al. Maximal Empty Cuboids Among Points and Blocks , 1998 .
[21] Mikhail J. Atallah,et al. A note on finding a maximum empty rectangle , 1986, Discret. Appl. Math..
[22] Amitava Datta,et al. An efficient algorithm for computing the maximum empty rectangle in three dimensions , 2000, Inf. Sci..
[23] Haim Kaplan,et al. Submatrix maximum queries in Monge matrices and Monge partial matrices, and their applications , 2012, SODA.
[24] G. Purdy. Some extremal problems in geometry , 1971 .
[25] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.
[26] G. Rote,et al. Quasi-Monte-Carlo methods and the dispersion of point sequences , 1996 .
[27] Jorge Urrutia,et al. Finding the largest axis aligned rectangle in a polygon in o(n log n) time , 2001, CCCG.
[28] Magnus Wahlström,et al. Hardness of discrepancy computation and ε-net verification in high dimension , 2012, J. Complex..
[29] Bernard Chazelle,et al. Computing the Largest Empty Rectangle , 1984, SIAM J. Comput..
[30] David P. Dobkin,et al. Maintenance of geometric extrema ∈ , 1991, JACM.
[31] Micha Sharir,et al. Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.
[32] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[33] D. T. Lee,et al. On the maximum empty rectangle problem , 1984, Discret. Appl. Math..
[34] H. Davenport. A combinatorial problem connected with differential equations II , 1971 .
[35] Adrian Dumitrescu,et al. Maximal Empty Boxes Amidst Random Points , 2012, Combinatorics, probability & computing.
[36] Aicke Hinrichs,et al. On the size of the largest empty box amidst a point set , 2015, Discret. Appl. Math..