On the Number of Maximum Empty Boxes Amidst n Points

We revisit the following problem (along with its higher dimensional variant): Given a set S of n points inside an axis-parallel rectangle U in the plane, find a maximum-area axis-parallel sub-rectangle that is contained in U but contains no points of S.(I)We prove that the number of maximum-area empty rectangles amidst n points in the plane is $$O(n \log {n} \, 2^{\alpha (n)})$$O(nlogn2α(n)), where $$\alpha (n)$$α(n) is the extremely slowly growing inverse of Ackermann’s function. The previous best bound, $$O(n^2)$$O(n2), is due to Naamad et al. (Discrete Appl Math 8(3):267–277, 1984).(II)For any $$d \ge 3$$d≥3, we prove that the number of maximum-volume empty boxes amidst n points in $$\mathbb {R}^d$$Rd is always $$O(n^d)$$O(nd) and sometimes $$\Omega (n^{\lfloor d/2 \rfloor })$$Ω(n⌊d/2⌋). This is the first superlinear lower bound derived for this problem.(III)We discuss some algorithmic aspects regarding the search for a maximum empty box in $$\mathbb {R}^3$$R3. In particular, we present an algorithm that finds a $$(1-\varepsilon )$$(1-ε)-approximation of the maximum empty box amidst n points in $$O(\varepsilon ^{-2} n^{5/3} \log ^2{n})$$O(ε-2n5/3log2n) time.

[1]  J. Mark Keil,et al.  The Mono- and Bichromatic Empty Rectangle and Square Problems in All Dimensions , 2010, LATIN.

[2]  J. Mark Keil,et al.  The Bichromatic Rectangle Problem in High Dimensions , 2009, CCCG.

[3]  Alok Aggarwal,et al.  Geometric applications of a matrix-searching algorithm , 1987, SCG '86.

[4]  Alok Aggarwal,et al.  Applications of generalized matrix searching to geometric algorithms , 1990, Discret. Appl. Math..

[5]  Alok Aggarwal,et al.  Fast algorithms for computing the largest empty rectangle , 1987, SCG '87.

[7]  Haim Kaplan,et al.  Efficient Colored Orthogonal Range Counting , 2008, SIAM J. Comput..

[8]  Micha Sharir,et al.  Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 1989, J. Comb. Theory A.

[9]  Adrian Dumitrescu,et al.  Perfect vector sets, properly overlapping partitions, and largest empty box , 2016, ArXiv.

[10]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[11]  H. Davenport,et al.  A Combinatorial Problem Connected with Differential Equations , 1965 .

[12]  Renée J. Miller,et al.  Mining for empty spaces in large data sets , 2003, Theor. Comput. Sci..

[13]  Adrian Dumitrescu,et al.  On the Largest Empty Axis-Parallel Box Amidst n Points , 2009, Algorithmica.

[14]  Adrian Dumitrescu,et al.  Computational Geometry Column 60 , 2014, SIGA.

[15]  J. Matousek,et al.  Geometric Discrepancy: An Illustrated Guide , 2009 .

[16]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[17]  John Augustine,et al.  Querying for the Largest Empty Geometric Object in a Desired Location , 2010, 1004.0558.

[18]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[19]  Günter Rote,et al.  Triangles of Extremal Area or Perimeter in a Finite Planar Point Set , 2001, Discret. Comput. Geom..

[20]  Subhas C. Nandy,et al.  Maximal Empty Cuboids Among Points and Blocks , 1998 .

[21]  Mikhail J. Atallah,et al.  A note on finding a maximum empty rectangle , 1986, Discret. Appl. Math..

[22]  Amitava Datta,et al.  An efficient algorithm for computing the maximum empty rectangle in three dimensions , 2000, Inf. Sci..

[23]  Haim Kaplan,et al.  Submatrix maximum queries in Monge matrices and Monge partial matrices, and their applications , 2012, SODA.

[24]  G. Purdy Some extremal problems in geometry , 1971 .

[25]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[26]  G. Rote,et al.  Quasi-Monte-Carlo methods and the dispersion of point sequences , 1996 .

[27]  Jorge Urrutia,et al.  Finding the largest axis aligned rectangle in a polygon in o(n log n) time , 2001, CCCG.

[28]  Magnus Wahlström,et al.  Hardness of discrepancy computation and ε-net verification in high dimension , 2012, J. Complex..

[29]  Bernard Chazelle,et al.  Computing the Largest Empty Rectangle , 1984, SIAM J. Comput..

[30]  David P. Dobkin,et al.  Maintenance of geometric extrema ∈ , 1991, JACM.

[31]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[32]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[33]  D. T. Lee,et al.  On the maximum empty rectangle problem , 1984, Discret. Appl. Math..

[34]  H. Davenport A combinatorial problem connected with differential equations II , 1971 .

[35]  Adrian Dumitrescu,et al.  Maximal Empty Boxes Amidst Random Points , 2012, Combinatorics, probability & computing.

[36]  Aicke Hinrichs,et al.  On the size of the largest empty box amidst a point set , 2015, Discret. Appl. Math..