SiC MATERIAL PROPERTIES

This chapter briefly summarizes device-relevant material properties of the wide bandgap semiconductor silicon carbide. The polytypes 4H-, 6H- and 3C-SiC are predominantly considered. These SiC polytypes can reproducibly be grown as single crystals; they have superior electronic and thermal material properties. The conductivity type can be adjusted by shallow donors and acceptors. Special sections are related to the diffusion of dopants, to the impurity conduction, to the minority carrier lifetime and to the different types of traps generated at the interface of thermally grown SiC/SiO2 structures.

[1]  S. Dhariwal,et al.  Determination of carrier lifetime in p-i-n diodes by ramp recovery , 1992, IEEE Electron Device Letters.

[2]  P. Friedrichs,et al.  Significantly improved performance of MOSFETs on silicon carbide using the 15R-SiC polytype , 1999, IEEE Electron Device Letters.

[3]  H. Matsunami,et al.  Phonon‐electron scattering in single crystal silicon carbide , 1993 .

[4]  R. J. Wagner,et al.  Electron cyclotron resonance in cubic SiC , 1985 .

[5]  G. Pensl,et al.  Comparison of Electrically and Optically Determined Minority Carrier Lifetimes in 6H-SiC , 2005 .

[6]  P. Mawby,et al.  Comparative surface studies on wet and dry sacrificial thermal oxidation on silicon carbide , 2001 .

[7]  Qamar Ul Wahab,et al.  High-carbon concentrations at the silicon dioxide–silicon carbide interface identified by electron energy loss spectroscopy , 2000 .

[8]  Pa Peter Bobbert,et al.  On the Band Gap Variation in SiC Polytypes , 1997 .

[9]  R. Davis,et al.  Hall measurements as a function of temperature on monocrystalline SiC thin films , 1990 .

[10]  Michael R. Melloch,et al.  Effect of substrate orientation and crystal anisotropy on the thermally oxidized SiO2/SiC interface , 1996 .

[11]  J. S. Blakemore Semiconductor Statistics , 1962 .

[12]  D. Alok,et al.  Electrical properties of thermal oxide grown on n‐type 6H‐silicon carbide , 1994 .

[13]  D. Würtz,et al.  The sign anomaly of the Hall effect in amorphous tetrahedrally bonded semiconductors: a chemical-bond orbital approach , 1981 .

[14]  G. W. Ludwig,et al.  Electron Spin Resonance Studies in SiC , 1961 .

[15]  S. Greulich-Weber EPR and ENDOR investigations of shallow impurities in SiC polytypes , 1997 .

[16]  B. Shklovskii,et al.  Impurity conductivity in low compensated semiconductors , 1972 .

[17]  T. Kamiya,et al.  The Electrical Characteristics of Metal-Oxide-Semiconductor Field Effect Transistors Fabricated on Cubic Silicon Carbide , 2003 .

[18]  H. B. Harrison,et al.  INTERFACIAL CHARACTERISTICS OF N2O AND NO NITRIDED SIO2 GROWN ON SIC BY RAPID THERMAL PROCESSING , 1997 .

[19]  Friedhelm Bechstedt,et al.  Polytypism and Properties of Silicon Carbide , 1997 .

[20]  Mary Ellen Zvanut,et al.  Characterization of paramagnetic defect centers in three polytypes of dry heat treated, oxidized SiC , 2000 .

[21]  Dong Ning Wang,et al.  On the correlation between the carbon content and the electrical quality of thermally grown oxides on p-type 6H–Silicon carbide , 1998 .

[22]  H. Bracht,et al.  Diffusion of boron in silicon carbide: Evidence for the kick-out mechanism , 2000 .

[23]  G. Pensl,et al.  Experimental Evidence for an Electrically Neutral (N-Si)-Complex Formed during the Annealing Process of Si+-/N+-Co-Implanted 4H-SiC , 2005 .

[24]  Andre Stesmans,et al.  Elimination of SiC/SiO2 interface states by preoxidation ultraviolet‐ozone cleaning , 1996 .

[25]  P. Godignon,et al.  First-principles studies of the diffusion of B impurities and vacancies in SiC , 2004 .

[26]  Tsunenobu Kimoto,et al.  4H-SiC MOSFETs on (03-38) Face , 2002 .

[27]  G. Pensl,et al.  Growth of Phosphorus-Doped 6H-SiC Single Crystals by the Modified Lely Method , 2003 .

[28]  Mario G. Ancona,et al.  Using the Hall effect to measure interface trap densities in silicon carbide and silicon metal-oxide-semiconductor devices , 2002 .

[29]  G. D. Watkins,et al.  Optical Detection of Magnetic Resonance for an Effective-Mass-like Acceptor in6H-SiC , 1980 .

[30]  Jan F. Schmidt,et al.  Electronic structure of the shallow boron acceptor in 6H-SiC: A pulsed EPR/ENDOR study at 95 GHz , 1997 .

[31]  J. Devreese,et al.  Ground State and Electronic Properties of Silicon Carbide and Boron Nitride , 1988 .

[32]  N. V. Lien,et al.  Impurity band structure in lightly doped semiconductors , 1979 .

[33]  H. Matsunami Silicon Carbide Technology in New Era , 2002 .

[34]  J. Palmour,et al.  "Paradoxes" of carrier lifetime measurements in high-voltage SiC diodes , 2001 .

[35]  L. Feldman,et al.  4H-SiC oxynitridation for generation of insulating layers , 2004 .

[36]  L. Patrick Kohn-Luttinger Interference Effect and Location of the Conduction-Band Minima in 6 H SiC , 1972 .

[37]  H. Matsunami,et al.  Nuclear Transmutation Doping of Phosphorus into 6H-SiC , 2000 .

[38]  D. Siche,et al.  High Nitrogen Doping During Bulk Growth of SiC , 2004 .

[39]  B. Lax,et al.  Transient Response of a p‐n Junction , 1954 .

[40]  A. Hallén,et al.  Nitrogen deactivation by implantation-induced defects in 4H-SiC epitaxial layers , 2001 .

[41]  N. Miura,et al.  High-field cyclotron resonance and impurity transition in n-type and p-type 3C-SiC at magnetic fields up to 175 T. , 1993, Physical review. B, Condensed matter.

[42]  J. Bergman,et al.  Time Resolved Spectroscopy of Defects in SiC , 1997 .

[43]  M. Melloch,et al.  N-channel 3C-SiC MOSFETs on silicon substrate , 2002, IEEE Electron Device Letters.

[44]  Nevill Mott,et al.  Conduction in glasses containing transition metal ions , 1968 .

[45]  V. Afanas’ev,et al.  Intrinsic SiC/SiO2 Interface States , 1997 .

[46]  G. Pensl,et al.  Electrical activation of implanted phosphorus ions in [0001]- and [11–20]-oriented 4H-SiC , 2002 .

[47]  V. Afanas’ev,et al.  Low Density of Interface States in n-Type 4H-SiC MOS Capacitors Achieved by Nitrogen Implantation , 2005 .

[48]  Forward current-voltage characteristics of silicon carbide thyristors and diodes at high current densities , 1998 .

[49]  Sima Dimitrijev,et al.  Physical Properties of N2O and NO-nitrided gate oxides grown on 4H-SiC , 2001 .

[50]  S. Rashkeev,et al.  Electronic Band Structure of SiC Polytypes: A Discussion of Theory and Experiment , 1997 .

[51]  H. Fritzsche,et al.  Impurity Conduction in Transmutation-Doped p -Type Germanium , 1960 .

[52]  U. Rößler,et al.  Global band structure and near-band edge states , 1997 .

[53]  W. J. Choyke,et al.  Optical Lifetime Measurements in 4H SiC , 2000 .

[54]  Christer Hallin,et al.  Evaluation of Auger Recombination Rate in 4H-SiC , 1997 .

[55]  W. J. Choyke,et al.  Measurement of the Hall scattering factor in 4H and 6H SiC epilayers from 40 to 290 K and in magnetic fields up to 9 T , 1998 .

[56]  U. Lindefelt,et al.  Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap. , 1996, Physical review. B, Condensed matter.

[57]  S. Dimitrijev,et al.  Effects of nitridation in gate oxides grown on 4H-SiC , 2001 .

[58]  G. Pensl,et al.  Hall Scattering Factor for Electrons and Holes in SiC , 2004 .

[59]  G. Pensl,et al.  Comparison of the electrical activation of P+ and N+ ions co-implanted along with Si+ or C+ ions into 4H-SiC , 2004 .

[60]  Y. Sugawara,et al.  High channel mobility in inversion layers of 4H-SiC MOSFETs by utilizing (112~0) face , 1999, IEEE Electron Device Letters.

[61]  E. Janzén,et al.  Hole effective masses in 6H-SiC from optically detected cyclotron resonance , 2002 .

[62]  A. Henry,et al.  Epitaxial Growth and Characterisation of Phosphorus Doped SiC Using TBP as Precursor , 2005 .

[63]  K. Rüschenschmidt,et al.  Self-diffusion in isotopically enriched silicon carbide and its correlation with dopant diffusion , 2004 .

[64]  Alexander Mattausch,et al.  Different roles of carbon and silicon interstitials in the interstitial-mediated boron diffusion in SiC , 2004 .

[65]  E. Abrahams,et al.  Impurity Conduction at Low Concentrations , 1960 .

[66]  W. M. Bullis,et al.  Properties of gold in silicon , 1966 .

[67]  E. Bano,et al.  6H-SiC MOS Capacitors on Sloped Surfaces: Realisation, Characterisation and Electrical Results , 1997 .

[68]  P. Krishna,et al.  The origin of polytype structures , 1983 .

[69]  Effects of nitridation and annealing on interface properties of thermally oxidized SiO2/SiC metal–oxide–semiconductor system , 2000 .

[70]  W. J. Choyke,et al.  Hall effect and infrared absorption measurements on nitrogen donors in 6H‐silicon carbide , 1992 .

[71]  P. Krishna Crystal growth and characterization of polytype structures , 1983 .

[72]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[73]  Nevill Mott,et al.  The theory of impurity conduction , 1961 .

[74]  H. B. Harrison,et al.  Effect of NO annealing conditions on electrical characteristics of n-type 4H-SiC MOS capacitors , 1999 .

[75]  A. Agarwal,et al.  Comparison of the annealing behavior of high-dose nitrogen-, aluminum-, and boron-implanted 4H–SiC , 1998 .

[76]  G. Pensl,et al.  Suppressed diffusion of implanted boron in 4H–SiC , 1999 .

[77]  G. Pensl,et al.  Phosphorus‐related donors in 6H‐SiC generated by ion implantation , 1996 .

[78]  W. J. Choyke,et al.  Anisotropy of the electron Hall mobility in 4H, 6H, and 15R silicon carbide , 1994 .

[79]  W. Suttrop,et al.  Nitrogen donors in 4H‐silicon carbide , 1993 .

[80]  G. Pensl,et al.  Electrical and Optical Characterization of SiC , 2003 .

[81]  L. Feldman,et al.  Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide , 2000 .

[82]  Alexander Mattausch,et al.  Solubility of nitrogen and phosphorus in 4H-SiC: A theoretical study , 2004 .

[83]  V. Heine,et al.  Calculated ground-state properties of silicon carbide , 1986 .

[84]  E. Janzén,et al.  Hole effective masses in 4H SiC , 2000 .

[85]  V. Afanas’ev,et al.  Analysis of near-interfacial SiO2 traps using photon stimulated electron tunneling , 1997 .

[86]  D. Emin The sign of the Hall effect in hopping conduction , 1977 .

[87]  H. Matsunami,et al.  A cause for highly improved channel mobility of 4H-SiC metal–oxide–semiconductor field-effect transistors on the (112̄0) face , 2001 .

[88]  H. Mehling,et al.  Determination of the thermal diffusivity and conductivity of monocrystalline silicon carbide (300-2300 K) , 1997 .

[89]  Nevill Mott,et al.  ON THE TRANSITION TO METALLIC CONDUCTION IN SEMICONDUCTORS , 1956 .

[90]  G. Pensl,et al.  Electrical activation of high concentrations of N+ and P+ ions implanted into 4H–SiC , 2002 .

[91]  C. Hu,et al.  Determination of carrier lifetime from rectifier ramp recovery waveform , 1988, IEEE Electron Device Letters.

[92]  Hiroshi Harima,et al.  Raman scattering from anisotropic LO‐phonon–plasmon–coupled mode in n‐type 4H– and 6H–SiC , 1995 .

[93]  Chen,et al.  Determination of the electron effective-mass tensor in 4H SiC. , 1996, Physical review. B, Condensed matter.

[94]  T. Chow,et al.  Epitaxial growth of n-type SiC using phosphine and nitrogen as the precursors , 2002 .

[95]  L. Feldman,et al.  Characterization and modeling of the nitrogen passivation of interface traps in SiO2/4H–SiC , 2003 .

[96]  E. Janzén,et al.  ELECTRON EFFECTIVE MASSES AND MOBILITIES IN HIGH-PURITY 6H-SIC CHEMICAL VAPOR DEPOSITION LAYERS , 1994 .

[97]  A. Winnacker,et al.  Growth of Phosphorous-Doped n-Type 6H-SiC Crystals using a Modified PVT Technique and Phosphine as Source , 2004 .

[98]  H. Matsunami,et al.  Shallow states at SiO2/4H-SiC interface on (112̄0) and (0001) faces , 2002 .

[99]  Thomas Frank,et al.  Doping of SiC by Implantation of Boron and Aluminum , 1997 .

[100]  A. Stesmans,et al.  LETTER TO THE EDITOR: Photon-stimulated tunnelling of electrons in ?: evidence for a defect-assisted process , 1997 .

[101]  H. Ólafsson,et al.  Enhancement of Inversion Channel Mobility in 4H-SiC MOSFETs using a Gate Oxide Grown in Nitrous Oxide (N2O) , 2004 .

[102]  Peter Friedrichs,et al.  Enhanced channel mobility of 4H–SiC metal–oxide–semiconductor transistors fabricated with standard polycrystalline silicon technology and gate-oxide nitridation , 2002 .

[103]  R. C. Bradt,et al.  Thermal expansion of the hexagonal (4H) polytype of SiC , 1986 .

[104]  G. Pensl,et al.  Impurity Conduction Observed in Al-Doped 6H-SiC , 2004 .

[105]  S. R. Smith,et al.  Determination of the activation energy ε3 for impurity conduction in n‐type 4H–SiC , 1996 .