DISCOVERY OF A BRIGHT, EXTREMELY LOW MASS WHITE DWARF IN A CLOSE DOUBLE DEGENERATE SYSTEM

We report the discovery of a bright (V {approx} 13.7), extremely low mass white dwarf in a close double degenerate system. We originally selected GALEX J171708.5+675712 for spectroscopic follow-up among a group of white dwarf candidates in an ultraviolet-optical reduced proper-motion diagram. The new white dwarf has a mass of 0.18 M{sub sun} and is the primary component of a close double degenerate system (P = 0.246137 days, K{sub 1} = 288 km s{sup -1}) comprising a fainter white dwarf secondary with M{sub 2} {approx} 0.9 M{sub sun}. Light curves phased with the orbital ephemeris show evidence of relativistic beaming and weaker ellipsoidal variations. The light curves also reveal secondary eclipses (depth {approx}8 mmag) while the primary eclipses appear partially compensated by the secondary gravitational deflection and are below detection limits. Photospheric abundance measurements show a nearly solar composition of Si, Ca, and Fe (0.1-1 sun), while the normal kinematics suggest a relatively recent formation history. Close binary evolutionary scenarios suggest that extremely low mass white dwarfs form via a common-envelope phase and possible Roche lobe overflow.

[1]  LP 400-22, A VERY LOW-MASS AND HIGH-VELOCITY WHITE DWARF , 2006, astro-ph/0604470.

[2]  Ben Zuckerman,et al.  Metal Lines in DA White Dwarfs , 2003 .

[3]  S. Vennes,et al.  The double degenerate system NLTT 11748 , 2010, 1005.3938.

[4]  Simon F. Portegies Zwart,et al.  Population synthesis for double white dwarfs. I. Close detached systems. , 2001 .

[5]  G. L. Wycoff,et al.  THE THIRD US NAVAL OBSERVATORY CCD ASTROGRAPH CATALOG (UCAC3) , 2004, 1003.2136.

[6]  S. Vennes,et al.  A selection of hot subluminous stars in the GALEX survey – I. Correlation with the Guide Star Catalog , 2010, 1008.3823.

[7]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[8]  D. Koester,et al.  The accretion-diffusion scenario for metals in cool white dwarfs , 2006 .

[9]  D. Kaplan,et al.  Pulsars in the NRAO VLA Sky Survey , 1998 .

[10]  D. Schneider,et al.  The magnetic maw of 2A 0311-22.7. , 1980 .

[11]  O. G. Benvenuto,et al.  Grids of white dwarf evolutionary models with masses from M=0.1 to 1.2 m⊙ , 1998 .

[12]  S. Vennes,et al.  The double degenerate LP 400-22 revisited , 2009, 0909.3261.

[13]  P. Etzel,et al.  Photometric orbits of seven detached eclipsing binaries , 1981 .

[14]  D. Kaplan,et al.  A GROUND-BASED MEASUREMENT OF THE RELATIVISTIC BEAMING EFFECT IN A DETACHED DOUBLE WHITE DWARF BINARY , 2010, 1010.2203.

[15]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[16]  Norbert Christlieb,et al.  Metal traces in white dwarfs of the SPY (ESO Supernova Ia Progenitor Survey) sample , 2005 .

[17]  A. Serenelli,et al.  The impact of element diffusion on the formation and evolution of helium white dwarf stars , 2001 .

[18]  Warren R. Brown,et al.  THE RUNAWAY WHITE DWARF LP400−22 HAS A COMPANION , 2009, 0903.1843.

[19]  The Lowest Mass White Dwarf , 2006, astro-ph/0611498.

[20]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[21]  A Helium White Dwarf of Extremely Low Mass , 2004, astro-ph/0404291.

[22]  Avi Shporer,et al.  DISCOVERY OF THE ECLIPSING DETACHED DOUBLE WHITE DWARF BINARY NLTT 11748 , 2010, The Astrophysical Journal.

[23]  Oxford,et al.  OBSERVATIONS OF DOPPLER BOOSTING IN KEPLER LIGHT CURVES , 2010, 1001.4539.

[24]  M. V. van Kerkwijk,et al.  THE (DOUBLE) WHITE DWARF BINARY SDSS 1257+5428 , 2010, 1003.2169.

[25]  Q. Guo From Dwarf Spheroidals to cDs: Simulating the Full Galaxy Population in a LCDM Cosmology , 2011 .

[26]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[27]  Warren R. Brown,et al.  THE ELM SURVEY. II. TWELVE BINARY WHITE DWARF MERGER SYSTEMS , 2010, 1011.4073.

[28]  Matthew D. Lallo,et al.  Kinematical Tests of White Dwarf Formation Channels and Evolution , 1988 .

[29]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[30]  Cheng Li,et al.  Erratum: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛCDM cosmology , 2010, 1006.0106.

[31]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[32]  A. Serenelli,et al.  Evolution and colours of helium-core white dwarf stars: the case of low-metallicity progenitors , 2002, astro-ph/0208408.

[33]  Ivan Hubeny,et al.  Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method , 1995 .

[34]  R. Napiwotzki,et al.  Discovery of a helium-core white dwarf progenitor , 2003 .

[35]  S. Vennes,et al.  A new extremely low-mass white dwarf in the NLTT catalogue , 2009, 0909.3249.

[36]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[37]  S. Anderson,et al.  NO NEUTRON STAR COMPANION TO THE LOWEST MASS SDSS WHITE DWARF , 2009, 0906.5109.

[38]  D. Lorimer,et al.  PSR:J1012+5307:a 5.26-ms pulsar in a 14.5-h binary system , 1995 .

[39]  I. Hubeny,et al.  Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs , 1995 .

[40]  David R. Soderblom,et al.  Calculating Galactic Space Velocities and Their Uncertainties, with an Application to the Ursa Major Group , 1987 .

[41]  Warren R. Brown,et al.  THE ELM SURVEY. I. A COMPLETE SAMPLE OF EXTREMELY LOW-MASS WHITE DWARFS , 2010, 1011.3050.