Generalized unitarity at work: First NLO QCD results for hadronic W+3 jet production

We compute the leading color, next-to-leading order QCD corrections to the dominant partonic channels for the production of a W boson in association with three jets at the Tevatron and the LHC. This is the first application of generalized unitarity for realistic one-loop calculations. The method performs well in this non-trivial test and offers great promise for the future.

[1]  T. Binoth,et al.  golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs , 2008, Comput. Phys. Commun..

[2]  D Maître,et al.  Precise predictions for w+3 jet production at hadron colliders. , 2009, Physical review letters.

[3]  V. Hankele,et al.  Vbfnlo: A parton level Monte Carlo for processes with electroweak bosons , 2008, Comput. Phys. Commun..

[4]  Giulia Zanderighi,et al.  Preprint typeset in JHEP style- HYPER VERSION Fermilab-PUB-08-436-T , 2022 .

[5]  L. Dixon,et al.  One-Loop Multi-Parton Amplitudes with a Vector Boson for the LHC , 2008, 0808.0941.

[6]  A. Denner,et al.  NLO QCD corrections to production at the LHC: 1. quark-antiquark annihilation , 2008, 0807.1248.

[7]  Z. Kunszt,et al.  Masses, fermions and generalized D-dimensional unitarity , 2008, 0806.3467.

[8]  G. Zanderighi,et al.  On the numerical evaluation of one-loop amplitudes: the gluonic case , 2008, 0805.2152.

[9]  K. Melnikov,et al.  Next-to-leading order QCD corrections to tt¯Z production at the LHC , 2008, 0804.2220.

[10]  R. Pittau,et al.  NLO QCD corrections to tri-boson production , 2008, 0804.0350.

[11]  D. Maitre,et al.  An Automated Implementation of On-shell Methods for One-Loop Amplitudes , 2008, 0803.4180.

[12]  Michael H. Seymour,et al.  TeVJet: A general framework for the calculation of jet observables in NLO QCD , 2008, 0803.2231.

[13]  R. Pittau,et al.  The NLO multileg working group: summary report , 2008, 0803.0494.

[14]  Z. Kunszt,et al.  A Numerical Unitarity Formalism for One-Loop Amplitudes , 2008, 0802.4227.

[15]  Z. Kunszt,et al.  Full one-loop amplitudes from tree amplitudes , 2008, 0801.2237.

[16]  G. Zanderighi,et al.  Scalar one-loop integrals for QCD , 2007, 0712.1851.

[17]  T. Aaltonen,et al.  Measurement of the cross section for W-boson production in association with jets in ppbar collisions at sqrt(s)=1.96 TeV , 2007, 0711.4044.

[18]  K. Melnikov,et al.  NLO QCD corrections to the production of ttZ in gluon fusion , 2007, 0709.4044.

[19]  Z. Kunszt,et al.  A numerical unitarity formalism for evaluating one-loop amplitudes , 2007, 0708.2398.

[20]  K. Melnikov,et al.  QCD corrections to triboson production , 2007, hep-ph/0703273.

[21]  D. Soper,et al.  Numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2006, hep-ph/0610028.

[22]  R. Pittau,et al.  Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.

[23]  G. Zanderighi,et al.  The one-loop amplitude for six-gluon scattering , 2006, hep-ph/0602185.

[24]  G.Zanderighi Semi-numerical evaluation of one-loop corrections , 2005, hep-ph/0511350.

[25]  A. Denner,et al.  Reduction schemes for one-loop tensor integrals , 2005, hep-ph/0509141.

[26]  G. Zanderighi,et al.  Seminumerical evaluation of one-loop corrections , 2005, hep-ph/0508308.

[27]  M. Roth,et al.  Complete electroweak O(α) corrections to charged-current e⁺e⁻ → 4 fermion processes , 2005 .

[28]  S. Weinzierl,et al.  Automated computation of one-loop integrals in massless theories , 2005, hep-ph/0502165.

[29]  F. Cachazo,et al.  Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills , 2004, hep-th/0412103.

[30]  F. Cachazo,et al.  Coplanarity in twistor space of N = 4 next-to-MHV one-loop amplitude coefficients , 2004, hep-th/0411107.

[31]  E. Glover,et al.  A Calculational Formalism for One-Loop Integrals , 2004, hep-ph/0402152.

[32]  J. Campbell,et al.  Next-to-leading order QCD predictions for $W$ + 2 jet and $Z$ + 2 jet production at the CERN LHC , 2003, hep-ph/0308195.

[33]  Z. Nagy Next-to-leading order calculation of three jet observables in hadron hadron collision , 2003, hep-ph/0307268.

[34]  G. Duplančić,et al.  Reduction method for dimensionally regulatedone-loop N-point Feynman integrals , 2003, hep-ph/0303184.

[35]  J. Campbell,et al.  Next-to-leading order corrections to $W^+$ 2 jet and $Z^+$ 2 jet production at hadron colliders , 2002, hep-ph/0202176.

[36]  J. Huston,et al.  New generation of parton distributions with uncertainties from global QCD analysis , 2002, hep-ph/0201195.

[37]  Z. Trocsanyi,et al.  Multijet cross sections in deep inelastic scattering at next-to-leading order. , 2001, Physical review letters.

[38]  D. Soper Choosing integration points for QCD calculations by numerical integration , 2001, hep-ph/0103262.

[39]  Fabio Maltoni,et al.  New color decompositions for gauge amplitudes at tree and loop level , 1999, hep-ph/9910563.

[40]  D. Soper Techniques for QCD calculations by numerical integration , 1999, hep-ph/9910292.

[41]  Z. Tr'ocs'anyi,et al.  Next-to-leading order calculation of four jet observables in electron positron annihilation , 1998, hep-ph/9806317.

[42]  D. Soper QCD calculations by numerical integration , 1998, hep-ph/9804454.

[43]  M. Seymour,et al.  Erratum to A general algorithm for calculating jet cross sections in NLO QCD [Nucl. Phys. B 485 (1 , 1998 .

[44]  L. Dixon,et al.  ONE-LOOP AMPLITUDES FOR E+E- TO FOUR PARTONS , 1997, hep-ph/9708239.

[45]  M. Seymour,et al.  A general algorithm for calculating jet cross sections in NLO QCD , 1996, hep-ph/9605323.

[46]  L. Dixon,et al.  One-loop corrections to two-quark three-gluon amplitudes☆☆☆ , 1994, hep-ph/9409393.

[47]  L. Dixon,et al.  One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.

[48]  A. I. Davydychev A simple formula for reducing Feynman diagrams to scalar integrals , 1991 .

[49]  A. E. Terrano,et al.  The perturbative calculation of jet structure in e + e - annihilation , 1981 .

[50]  M. Veltman,et al.  One-loop corrections for e + e - annihilation into μ + μ - in the Weinberg model , 1979 .

[51]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .