Generalized unitarity at work: First NLO QCD results for hadronic W+3 jet production
暂无分享,去创建一个
[1] T. Binoth,et al. golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs , 2008, Comput. Phys. Commun..
[2] D Maître,et al. Precise predictions for w+3 jet production at hadron colliders. , 2009, Physical review letters.
[3] V. Hankele,et al. Vbfnlo: A parton level Monte Carlo for processes with electroweak bosons , 2008, Comput. Phys. Commun..
[4] Giulia Zanderighi,et al. Preprint typeset in JHEP style- HYPER VERSION Fermilab-PUB-08-436-T , 2022 .
[5] L. Dixon,et al. One-Loop Multi-Parton Amplitudes with a Vector Boson for the LHC , 2008, 0808.0941.
[6] A. Denner,et al. NLO QCD corrections to production at the LHC: 1. quark-antiquark annihilation , 2008, 0807.1248.
[7] Z. Kunszt,et al. Masses, fermions and generalized D-dimensional unitarity , 2008, 0806.3467.
[8] G. Zanderighi,et al. On the numerical evaluation of one-loop amplitudes: the gluonic case , 2008, 0805.2152.
[9] K. Melnikov,et al. Next-to-leading order QCD corrections to tt¯Z production at the LHC , 2008, 0804.2220.
[10] R. Pittau,et al. NLO QCD corrections to tri-boson production , 2008, 0804.0350.
[11] D. Maitre,et al. An Automated Implementation of On-shell Methods for One-Loop Amplitudes , 2008, 0803.4180.
[12] Michael H. Seymour,et al. TeVJet: A general framework for the calculation of jet observables in NLO QCD , 2008, 0803.2231.
[13] R. Pittau,et al. The NLO multileg working group: summary report , 2008, 0803.0494.
[14] Z. Kunszt,et al. A Numerical Unitarity Formalism for One-Loop Amplitudes , 2008, 0802.4227.
[15] Z. Kunszt,et al. Full one-loop amplitudes from tree amplitudes , 2008, 0801.2237.
[16] G. Zanderighi,et al. Scalar one-loop integrals for QCD , 2007, 0712.1851.
[17] T. Aaltonen,et al. Measurement of the cross section for W-boson production in association with jets in ppbar collisions at sqrt(s)=1.96 TeV , 2007, 0711.4044.
[18] K. Melnikov,et al. NLO QCD corrections to the production of ttZ in gluon fusion , 2007, 0709.4044.
[19] Z. Kunszt,et al. A numerical unitarity formalism for evaluating one-loop amplitudes , 2007, 0708.2398.
[20] K. Melnikov,et al. QCD corrections to triboson production , 2007, hep-ph/0703273.
[21] D. Soper,et al. Numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2006, hep-ph/0610028.
[22] R. Pittau,et al. Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.
[23] G. Zanderighi,et al. The one-loop amplitude for six-gluon scattering , 2006, hep-ph/0602185.
[24] G.Zanderighi. Semi-numerical evaluation of one-loop corrections , 2005, hep-ph/0511350.
[25] A. Denner,et al. Reduction schemes for one-loop tensor integrals , 2005, hep-ph/0509141.
[26] G. Zanderighi,et al. Seminumerical evaluation of one-loop corrections , 2005, hep-ph/0508308.
[27] M. Roth,et al. Complete electroweak O(α) corrections to charged-current e⁺e⁻ → 4 fermion processes , 2005 .
[28] S. Weinzierl,et al. Automated computation of one-loop integrals in massless theories , 2005, hep-ph/0502165.
[29] F. Cachazo,et al. Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills , 2004, hep-th/0412103.
[30] F. Cachazo,et al. Coplanarity in twistor space of N = 4 next-to-MHV one-loop amplitude coefficients , 2004, hep-th/0411107.
[31] E. Glover,et al. A Calculational Formalism for One-Loop Integrals , 2004, hep-ph/0402152.
[32] J. Campbell,et al. Next-to-leading order QCD predictions for $W$ + 2 jet and $Z$ + 2 jet production at the CERN LHC , 2003, hep-ph/0308195.
[33] Z. Nagy. Next-to-leading order calculation of three jet observables in hadron hadron collision , 2003, hep-ph/0307268.
[34] G. Duplančić,et al. Reduction method for dimensionally regulatedone-loop N-point Feynman integrals , 2003, hep-ph/0303184.
[35] J. Campbell,et al. Next-to-leading order corrections to $W^+$ 2 jet and $Z^+$ 2 jet production at hadron colliders , 2002, hep-ph/0202176.
[36] J. Huston,et al. New generation of parton distributions with uncertainties from global QCD analysis , 2002, hep-ph/0201195.
[37] Z. Trocsanyi,et al. Multijet cross sections in deep inelastic scattering at next-to-leading order. , 2001, Physical review letters.
[38] D. Soper. Choosing integration points for QCD calculations by numerical integration , 2001, hep-ph/0103262.
[39] Fabio Maltoni,et al. New color decompositions for gauge amplitudes at tree and loop level , 1999, hep-ph/9910563.
[40] D. Soper. Techniques for QCD calculations by numerical integration , 1999, hep-ph/9910292.
[41] Z. Tr'ocs'anyi,et al. Next-to-leading order calculation of four jet observables in electron positron annihilation , 1998, hep-ph/9806317.
[42] D. Soper. QCD calculations by numerical integration , 1998, hep-ph/9804454.
[43] M. Seymour,et al. Erratum to A general algorithm for calculating jet cross sections in NLO QCD [Nucl. Phys. B 485 (1 , 1998 .
[44] L. Dixon,et al. ONE-LOOP AMPLITUDES FOR E+E- TO FOUR PARTONS , 1997, hep-ph/9708239.
[45] M. Seymour,et al. A general algorithm for calculating jet cross sections in NLO QCD , 1996, hep-ph/9605323.
[46] L. Dixon,et al. One-loop corrections to two-quark three-gluon amplitudes☆☆☆ , 1994, hep-ph/9409393.
[47] L. Dixon,et al. One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.
[48] A. I. Davydychev. A simple formula for reducing Feynman diagrams to scalar integrals , 1991 .
[49] A. E. Terrano,et al. The perturbative calculation of jet structure in e + e - annihilation , 1981 .
[50] M. Veltman,et al. One-loop corrections for e + e - annihilation into μ + μ - in the Weinberg model , 1979 .
[51] G. Lepage. A new algorithm for adaptive multidimensional integration , 1978 .