Lagrangian analysis of multiscale particulate flows with the particle finite element method

We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.

[1]  Eugenio Oñate,et al.  The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves , 2004 .

[2]  Eugenio Oñate,et al.  Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems , 1998 .

[3]  Mourad Zeghal,et al.  COUPLED CONTINUUM-DISCRETE MODEL FOR SATURATED GRANULAR SOILS , 2005 .

[4]  R. Jackson,et al.  The Dynamics of Fluidized Particles , 2000 .

[5]  Eugenio Oñate,et al.  Computation of turbulent flows using a finite calculus–finite element formulation , 2007 .

[6]  Rafael Morán Moya,et al.  Modelación numérica de deslizamientos de ladera en embalses mediante el Método de Partículas y Elementos Finitos (PFEM) , 2012 .

[7]  Eugenio Oñate,et al.  A particle finite element method for analysis of industrial forming processes , 2014 .

[8]  Eugenio Oñate,et al.  Melting and spread of polymers in fire with the particle finite element method , 2010 .

[9]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[10]  Eugenio Oñate,et al.  The challenge of mass conservation in the solution of free‐surface flows with the fractional‐step method: Problems and solutions , 2008 .

[11]  Tarek I. Zohdi,et al.  Computation of strongly coupled multifield interaction in particle–fluid systems , 2007 .

[12]  Eugenio Oñate,et al.  A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation , 2001 .

[13]  J. Young,et al.  Full Lagrangian methods for calculating particle concentration fields in dilute gas-particle flows , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Eugenio Oñate,et al.  Updated lagrangian mixed finite element formulation for quasi and fully incompressible fluids , 2014 .

[15]  T. I. Zohdi,et al.  An introduction to modeling and simulation of particulate flows , 2007, Computational science and engineering.

[16]  Eugenio Oñate,et al.  Modeling of ground excavation with the particle finite element method , 2010 .

[17]  Daichao Sheng,et al.  A saturated discrete particle model and characteristic‐based SPH method in granular materials , 2007 .

[18]  Lucy T. Zhang,et al.  On computational issues of immersed finite element methods , 2009, J. Comput. Phys..

[19]  S. Liu,et al.  Simulating the collapse of unsaturated soil by DEM , 2002 .

[20]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[21]  T. B. Anderson,et al.  Fluid Mechanical Description of Fluidized Beds. Equations of Motion , 1967 .

[22]  O. C. Zienkiewicz,et al.  The Finite Element Method for Fluid Dynamics , 2005 .

[23]  E. Oñate,et al.  FIC/FEM Formulation with Matrix Stabilizing Terms for Incompressible Flows at Low and High Reynolds Numbers , 2006 .

[24]  D. Gidaspow Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions , 1994 .

[25]  Eugenio Oñate,et al.  Finite calculus formulations for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches , 2006 .

[26]  Eugenio Oñate,et al.  Modeling bed erosion in free surface flows by the particle finite element method , 2006 .

[27]  M. Adams,et al.  Discrete particle-continuum fluid modelling of gas–solid fluidised beds , 2002 .

[28]  Eugenio Oñate,et al.  Multi-fluid flows with the Particle Finite Element Method , 2009 .

[29]  Eugenio Oñate,et al.  A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation , 2000 .

[30]  P. Wriggers,et al.  A DEM-FEM Coupling Approach for the Direct Numerical Simulation of 3D Particulate Flows , 2012 .

[31]  Eugenio Oñate,et al.  Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems , 2004 .

[32]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[33]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[34]  Javier Oliver,et al.  A contact domain method for large deformation frictional contact problems. Part 1: Theoretical basis , 2009 .

[35]  Eugenio Oñate,et al.  Multiscale computational analysis in mechanics using finite calculus: an introduction , 2003 .

[36]  Neelesh A. Patankar,et al.  Lagrangian numerical simulation of particulate flows , 2001 .

[37]  O. C. Zienkiewicz,et al.  Flow of solids during forming and extrusion: Some aspects of numerical solutions , 1978 .

[38]  Eugenio Oñate,et al.  Lagrangian formulation for finite element analysis of quasi‐incompressible fluids with reduced mass losses , 2014 .

[39]  Eugenio Oñate,et al.  Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method , 2013 .

[40]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[41]  Eugenio Oñate,et al.  Improving mass conservation in simulation of incompressible flows , 2012 .

[42]  R. Taylor The Finite Element Method, the Basis , 2000 .

[43]  Eugenio Oñate,et al.  Structural Analysis with the Finite Element Method , 2009 .

[44]  Eugenio Oñate,et al.  Possibilities of Finite Calculus in Computational Mechanics , 2001 .

[45]  Eugenio Oñate,et al.  Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM , 2008 .

[46]  Eugenio Oñate,et al.  Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows , 2008 .

[47]  O. Levenspiel,et al.  Drag coefficient and terminal velocity of spherical and nonspherical particles , 1989 .

[48]  Johannes Khinast,et al.  Large-scale CFD–DEM simulations of fluidized granular systems , 2013 .

[49]  Paul W. Cleary,et al.  Dust modelling using a combined CFD and discrete element formulation , 2013 .

[50]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[51]  U. Perego,et al.  A Lagrangian finite element approach for the simulation of water-waves induced by landslides , 2011 .

[52]  J. C. Cante,et al.  Particle Finite Element Methods in Solid Mechanics Problems , 2007 .

[53]  Antonia Larese,et al.  Validation of the particle finite element method (PFEM) for simulation of free surface flows , 2008 .

[54]  O. C. Zienkiewicz,et al.  The Standard Discrete System and Origins of the Finite Element Method , 2005 .

[55]  Eugenio Oñate,et al.  Structural Analysis with the Finite Element Method Linear Statics , 2013 .

[56]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[57]  E. Oñate,et al.  Possibilities of the particle finite element method for fluid–soil–structure interaction problems , 2011 .

[58]  Tianshu Wang,et al.  Some improvements on free surface simulation by the particle finite element method , 2009 .