An approach to construct a three-dimensional isogeometric model from μ-CT scan data with an application to the bridge of a violin

Abstract We present an algorithm to build a ready to use isogeometric model from scan data gained by a μ-CT scan. Based on a three-dimensional multi-patch reference geometry, which includes the major topological features, we fit the outline, then the cross-section and finally the three-dimensional geometry. The key step is to fit the outline, where a non-linear least squares problem is solved with a Gauss-Newton approach presented by Borges and Pastva (2002) . We extend this approach by a regularisation and a precise interpolation of selected data points. The resulting NURBS geometry is ready for applying isogeometric analysis tools for efficient numerical simulations. As a particular example we examine the scan data of a violin bridge and present the complete workflow from the μ-CT scan up to the numerical simulation based on isogeometric mortar methods. We illustrate the relevance of the constructed geometry with a vibro-acoustical application.

[1]  Falai Chen,et al.  Computing IGA-suitable planar parameterizations by PolySquare-enhanced domain partition , 2018, Comput. Aided Geom. Des..

[2]  Jim Woodhouse,et al.  The physics of the violin , 1986 .

[3]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[4]  Wenping Wang,et al.  A revisit to fitting parametric surfaces to point clouds , 2012, Comput. Graph..

[5]  Falai Chen,et al.  Planar domain parameterization for isogeometric analysis based on Teichmüller mapping , 2016 .

[7]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[8]  K. Höllig Finite element methods with B-splines , 1987 .

[9]  Xin Li,et al.  B-spline surface fitting with knot position optimization , 2016, Comput. Graph..

[10]  Gene H. Golub,et al.  The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.

[11]  Hongwei Lin,et al.  Progressive and iterative approximation for least squares B-spline curve and surface fitting , 2014, Comput. Aided Des..

[12]  Régis Duvigneau,et al.  Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method , 2013, J. Comput. Phys..

[13]  Hans-Peter Seidel,et al.  Robust filtering of noisy scattered point data , 2005, Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005..

[14]  Gábor Renner,et al.  Advanced surface fitting techniques , 2002, Comput. Aided Geom. Des..

[15]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[16]  M. Glas,et al.  Principles of Computerized Tomographic Imaging , 2000 .

[17]  Gregory M. Nielson,et al.  Knot selection for parametric spline interpolation , 1989 .

[18]  Sung-Kie Youn,et al.  Isogeometric analysis with trimming technique for problems of arbitrary complex topology , 2010 .

[19]  Juan Manuel Peña,et al.  Progressive iteration approximation and the geometric algorithm , 2012, Comput. Aided Des..

[20]  S. A. Coons SURFACES FOR COMPUTER-AIDED DESIGN OF SPACE FORMS , 1967 .

[21]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[22]  Ping Hu,et al.  Progressive iterative approximation for regularized least square bivariate B-spline surface fitting , 2018, J. Comput. Appl. Math..

[23]  Barbara Wohlmuth,et al.  Isogeometric mortar methods , 2014, 1407.8313.

[24]  Maks Ovsjanikov,et al.  PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds , 2019, Comput. Graph. Forum.

[25]  Jim Woodhouse,et al.  On the "Bridge Hill" of the Violin , 2005 .

[26]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[27]  Ligang Liu,et al.  Consolidation of Low‐quality Point Clouds from Outdoor Scenes , 2013, SGP '13.

[28]  Carl T. Haas,et al.  State of research in automatic as-built modelling , 2015, Adv. Eng. Informatics.

[29]  James C. Grande,et al.  Micro/Nano-CT for Visualization of Internal Structures , 2013, Microscopy Today.

[30]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[31]  Roland Wüchner,et al.  Isogeometric analysis of trimmed NURBS geometries , 2012 .

[32]  Bert Jüttler,et al.  Planar multi-patch domain parameterization via patch adjacency graphs , 2017, Comput. Aided Des..

[33]  Bert Jüttler,et al.  THB-splines multi-patch parameterization for multiply-connected planar domains via Template Segmentation , 2019, J. Comput. Appl. Math..

[34]  Bert Jüttler,et al.  Spline surface fitting using normal data and norm-like functions , 2018, Comput. Aided Geom. Des..

[35]  Les A. Piegl,et al.  From CT to NURBS: Contour Fitting with B-spline Curves , 2010 .

[36]  Omri Rand,et al.  Analytical Methods in Anisotropic Elasticity: with Symbolic Computational Tools , 2004 .

[37]  Barbara Wohlmuth,et al.  Reduced Basis Isogeometric Mortar Approximations for Eigenvalue Problems in Vibroacoustics , 2016, 1606.01163.

[38]  Alireza Ebrahimi,et al.  Shape modeling based on specifying the initial B-spline curve and scaled BFGS optimization method , 2018, Multimedia Tools and Applications.

[39]  I. I. Rushakov,et al.  Computed Tomography , 2019, Compendium of Biomedical Instrumentation.

[40]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[41]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[42]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[43]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[44]  J Herzen,et al.  Spatial resolution characterization of a X-ray microCT system. , 2014, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[45]  Hamid D. Taghirad,et al.  Reconstruction of B-spline curves and surfaces by adaptive group testing , 2016, Comput. Aided Des..

[46]  S. Schwerman,et al.  The Physics of Musical Instruments , 1991 .

[47]  Lei Gao,et al.  Signal Processing: Image Communication , 2022 .

[48]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[49]  Andrés Iglesias,et al.  Iterative two-step genetic-algorithm-based method for efficient polynomial B-spline surface reconstruction , 2012, Inf. Sci..

[50]  Jens Gravesen,et al.  Planar Parametrization in Isogeometric Analysis , 2012, MMCS.

[51]  Carlos F. Borges,et al.  Total least squares fitting of Bézier and B-spline curves to ordered data , 2002, Comput. Aided Geom. Des..

[52]  T. Pan Computed Tomography: from Photon Statistics to Modern Cone-Beam CT , 2009, Journal of Nuclear Medicine.