Homomorphic solution of fully fuzzy linear systems

In this paper, a fully fuzzy linear system (FFLS) is considered. By defuzzifying, the (n × n) FFLS can be replaced by three (n × n) crisp linear systems, and consequently its homomorphic solution in canonical trapezoidal form based on three (n × n) crisp linear solutions associated with three parameters, value, ambiguity, and fuzziness, is calculated.

[1]  Abraham Kandel,et al.  Fuzzy linear systems , 1998, Fuzzy Sets Syst..

[2]  Mehdi Dehghan,et al.  Solution of the fully fuzzy linear systems using iterative techniques , 2007 .

[3]  Wang Jiang,et al.  H∞ Variable universe adaptive fuzzy control for chaotic system , 2005 .

[4]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[5]  Elnaschie ON A FUZZY KAHLER MANIFOLD WHICH IS CONSISTENT WITH THE TWO SLIT EXPERIMENT , 2005 .

[6]  J. Buckley,et al.  Solving systems of linear fuzzy equations , 1991 .

[7]  Saeid Abbasbandy,et al.  LU decomposition method for solving fuzzy system of linear equations , 2006, Appl. Math. Comput..

[8]  M. S. El Naschie,et al.  The Concepts of E Infinity: An elementary introduction to the Cantorian-fractal theory of quantum physics , 2004 .

[9]  Xizhao Wang,et al.  Iteration algorithms for solving a system of fuzzy linear equations , 2001, Fuzzy Sets Syst..

[10]  Mehdi Dehghan,et al.  Iterative solution of fuzzy linear systems , 2006, Appl. Math. Comput..

[11]  Madan M. Gupta,et al.  Introduction to Fuzzy Arithmetic , 1991 .

[12]  Tofigh Allahviranloo,et al.  A method for solving nth order fuzzy linear differential equations , 2009, Int. J. Comput. Math..

[13]  Elnaschie ELEMENTARY NUMBER THEORY IN SUPERSTRINGS, LOOP QUANTUM MECHANICS, TWISTERS AND E-INFINITY HIGH ENERGY PHYSICS , 2006 .

[14]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[15]  M. Amparo Vila,et al.  A fuzziness measure for fuzzy numbers: Applications , 1998, Fuzzy Sets Syst..

[16]  Tofigh Allahviranloo,et al.  The Adomian decomposition method for fuzzy system of linear equations , 2005, Appl. Math. Comput..

[17]  Tofigh Allahviranloo,et al.  Successive over relaxation iterative method for fuzzy system of linear equations , 2005, Appl. Math. Comput..

[18]  Elnaschie A REVIEW OF E INFINITY THEORY AND THE MASS SPECTRUM OF HIGH ENERGY PARTICLE PHYSICS , 2004 .

[19]  Kourosh Nozari,et al.  SOME CONSEQUENCES OF SPACE TIME FUZZINESS , 2007 .

[20]  Elnaschie SUPERSTRINGS, ENTROPY AND THE ELEMENTARY PARTICLES CONTENT OF THE STANDARD MODEL , 2006 .

[21]  Elnaschie THE CONCEPTS OF E INFINITY: AN ELEMENTARY INTRODUCTION TO THE CANTORIAN-FRACTAL THEORY OF QUANTUM PHYSICS , 2004 .

[22]  Guanrong Chen,et al.  Adaptive control of discrete-time chaotic systems: a fuzzy control approach , 2004 .

[23]  Kourosh Nozari,et al.  Some consequences of spacetime fuzziness , 2007 .

[24]  M. S. El Naschie,et al.  On a Fuzzy Kähler-like Manifold which is Consistent with the Two Slit Experiment , 2005 .

[25]  M. E. Naschie,et al.  A review of E infinity theory and the mass spectrum of high energy particle physics , 2004 .

[26]  Tofigh Allahviranloo,et al.  Numerical methods for fuzzy system of linear equations , 2004, Appl. Math. Comput..

[27]  Yosuke Tanaka,et al.  Chaotic dynamics in the Friedmann equation , 2005 .

[28]  Saeid Abbasbandy,et al.  Conjugate gradient method for fuzzy symmetric positive definite system of linear equations , 2005, Appl. Math. Comput..

[29]  M. S. El Naschie,et al.  Superstrings, entropy and the elementary particles content of the standard model , 2006 .

[30]  Saeid Abbasbandy,et al.  Fuzzy general linear systems , 2005, Appl. Math. Comput..

[31]  J. H. Park Intuitionistic Fuzzy Metric Spaces , 2004 .

[32]  M. E. Naschie,et al.  Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics , 2006 .

[33]  Silvia Muzzioli,et al.  Fuzzy linear systems of the form A 1 x + b 1 = A 2 x + b 2 , 2006 .

[34]  Saeid Jafari,et al.  θ-Compact fuzzy topological spaces , 2005 .

[35]  Caroline M. Eastman,et al.  Response: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[36]  Abraham Kandel,et al.  Duality in fuzzy linear systems , 2000, Fuzzy Sets Syst..

[37]  Silvia Muzzioli,et al.  Fuzzy linear systems of the form A1x+b1=A2x+b2 , 2006, Fuzzy Sets Syst..