Advances in imaging ultrastructure yield new insights into presynaptic biology

Synapses are the fundamental functional units of neural circuits, and their dysregulation has been implicated in diverse neurological disorders. At presynaptic terminals, neurotransmitter-filled synaptic vesicles are released in response to calcium influx through voltage-gated calcium channels activated by the arrival of an action potential. Decades of electrophysiological, biochemical, and genetic studies have contributed to a growing understanding of presynaptic biology. Imaging studies are yielding new insights into how synapses are organized to carry out their critical functions. The development of techniques for rapid immobilization and preservation of neuronal tissues for electron microscopy (EM) has led to a new renaissance in ultrastructural imaging that is rapidly advancing our understanding of synapse structure and function.

[1]  Zhihua Liu,et al.  RIM Promotes Calcium Channel Accumulation at Active Zones of the Drosophila Neuromuscular Junction , 2012, The Journal of Neuroscience.

[2]  Arne Stoschek,et al.  The architecture of active zone material at the frog's neuromuscular junction , 2001, Nature.

[3]  Mark Ellisman,et al.  Electron tomographic analysis of synaptic ultrastructure , 2012, The Journal of comparative neurology.

[4]  Gray Eg,et al.  The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations. , 1961 .

[5]  Uri Ashery,et al.  Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states , 2014, Nature Communications.

[6]  Z. Sellers,et al.  Calcium channel γ subunits: a functionally diverse protein family , 2007, Cell Biochemistry and Biophysics.

[7]  T. Südhof The Presynaptic Active Zone , 2012, Neuron.

[8]  J. Nakai,et al.  Primary structure and functional expression from complementary DNA of a brain calcium channel , 1991, Nature.

[9]  T. Kirchhausen,et al.  Stabilization of clathrin coats by the core of the clathrin-associated protein complex AP-2. , 1990, Biochemistry.

[10]  J. Jung,et al.  Alignment of Synaptic Vesicle Macromolecules with the Macromolecules in Active Zone Material that Direct Vesicle Docking , 2013, PloS one.

[11]  L. Hersh,et al.  The Vesicular Acetylcholine Transporter Interacts with Clathrin-associated Adaptor Complexes AP-1 and AP-2* , 2004, Journal of Biological Chemistry.

[12]  E. Jorgensen,et al.  UNC-13 is required for synaptic vesicle fusion in C. elegans , 1999, Nature Neuroscience.

[13]  H. Bellen,et al.  The architecture of the active zone in the presynaptic nerve terminal. , 2004, Physiology.

[14]  Laurent Mottron,et al.  SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. , 2011, Human molecular genetics.

[15]  E. Chapman,et al.  Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles , 2005, The Journal of cell biology.

[16]  Shun-ying Yu,et al.  Synaptic proteins and receptors defects in autism spectrum disorders , 2014, Front. Cell. Neurosci..

[17]  Jian Yang,et al.  The ß subunit of voltage-gated Ca2+ channels. , 2010, Physiological reviews.

[18]  P. De Camilli,et al.  Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. , 1989, Science.

[19]  H. Moor,et al.  A NEW FREEZING-ULTRAMICROTOME , 1961, The Journal of biophysical and biochemical cytology.

[20]  J. Diamond,et al.  Vesicle depletion and synaptic depression at a mammalian ribbon synapse. , 2006, Journal of neurophysiology.

[21]  Michael G Hanna,et al.  Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel , 2001, The Lancet.

[22]  T. Reese,et al.  EVIDENCE FOR RECYCLING OF SYNAPTIC VESICLE MEMBRANE DURING TRANSMITTER RELEASE AT THE FROG NEUROMUSCULAR JUNCTION , 1973, The Journal of cell biology.

[23]  Pietro De Camilli,et al.  Dynamin, a membrane-remodelling GTPase , 2012, Nature Reviews Molecular Cell Biology.

[24]  Kate M. O’Connor-Giles,et al.  Fife, a Drosophila Piccolo-RIM Homolog, Promotes Active Zone Organization and Neurotransmitter Release , 2012, The Journal of Neuroscience.

[25]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[26]  P. Simmons,et al.  Structural Organization of the Presynaptic Density at Identified Synapses in the Locust Central Nervous System , 2012 .

[27]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[28]  Thomas C. Südhof,et al.  Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles , 1999, Nature.

[29]  E. Neher,et al.  Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes , 2010, Science.

[30]  J. Roach,et al.  Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes , 2014, Nature Genetics.

[31]  H. Atwood,et al.  Activity-induced changes in synaptic release sites at the crayfish neuromuscular junction , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  M. Dalva,et al.  Regulation of synaptic development and function by the Drosophila PDZ protein Dyschronic , 2014, Development.

[33]  B. Dean Signal Transmission, Rather Than Reception, is the Underlying Neurochemical Abnormality in Schizophrenia , 2000, The Australian and New Zealand journal of psychiatry.

[34]  H. Lerche,et al.  A BFIS‐like syndrome with late onset and febrile seizures: Suggestive linkage to chromosome 16p11.2–16q12.1 , 2008, Epilepsia.

[35]  Christian Rosenmund,et al.  Ultrafast endocytosis at mouse hippocampal synapses , 2013, Nature.

[36]  T. Südhof,et al.  A molecular machine for neurotransmitter release: synaptotagmin and beyond , 2013, Nature Medicine.

[37]  M. Bykhovskaia Synapsin regulation of vesicle organization and functional pools. , 2011, Seminars in cell & developmental biology.

[38]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[39]  Josef Ammermüller,et al.  The Presynaptic Active Zone Protein Bassoon Is Essential for Photoreceptor Ribbon Synapse Formation in the Retina , 2003, Neuron.

[40]  N. Brose For Better or for Worse: Complexins Regulate SNARE Function and Vesicle Fusion , 2008, Traffic.

[41]  U Valentin Nägerl,et al.  STED nanoscopy of actin dynamics in synapses deep inside living brain slices. , 2011, Biophysical journal.

[42]  R. Tsien,et al.  Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. , 2013, Annual review of physiology.

[43]  Paul J. Harrison,et al.  Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia , 1998, The Lancet.

[44]  E. Gray,et al.  The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations. , 1961, Journal of anatomy.

[45]  R. Llinás,et al.  Localization of P-type calcium channels in the central nervous system. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[46]  C. Sandri,et al.  The fine structure of freeze-fractured presynaptic membranes , 1972, Journal of neurocytology.

[47]  N. Hirokawa,et al.  The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1 , 1989, The Journal of cell biology.

[48]  N. Hirokawa,et al.  Synapsin I deficiency results in the structural change in the presynaptic terminals in the murine nervous system , 1995, The Journal of cell biology.

[49]  C. Tomasetti,et al.  Scaffolding Proteins of the Post-synaptic Density Contribute to Synaptic Plasticity by Regulating Receptor Localization and Distribution: Relevance for Neuropsychiatric Diseases , 2012, Neurochemical Research.

[50]  T. Martin,et al.  CAPS and Munc13: CATCHRs that SNARE Vesicles , 2013, Front. Endocrinol..

[51]  Michael Krauss,et al.  Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins , 2014, Science.

[52]  E. Fombonne,et al.  De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy , 2009, Annals of neurology.

[53]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[54]  W. Regehr,et al.  Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. , 2014, Annual review of physiology.

[55]  J. Fallon,et al.  Presynaptic Translation: Stepping Out of the Postsynaptic Shadow , 2009, Front. Neural Circuits.

[56]  T. Südhof,et al.  The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones , 2014, Neuron.

[57]  B. Franco,et al.  A Presynaptic Role of Microtubule-Associated Protein 1/Futsch in Drosophila: Regulation of Active Zone Number and Neurotransmitter Release , 2014, The Journal of Neuroscience.

[58]  E. Réal,et al.  Analysis of synaptic ultrastructure without fixative using high‐pressure freezing and tomography , 2006, The European journal of neuroscience.

[59]  K. Akagawa,et al.  Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. , 1992, The Journal of biological chemistry.

[60]  T. Maritzen,et al.  Relevance of presynaptic actin dynamics for synapse function and mouse behavior. , 2015, Experimental cell research.

[61]  R. Vallee,et al.  Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules , 1989, Cell.

[62]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[63]  R. Tsien,et al.  The Dynamic Control of Kiss-And-Run and Vesicular Reuse Probed with Single Nanoparticles , 2009, Science.

[64]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[65]  E. Gundelfinger,et al.  Molecular organization and plasticity of the cytomatrix at the active zone , 2012, Current Opinion in Neurobiology.

[66]  J. Dubochet,et al.  High-pressure freezing for cryoelectron microscopy. , 1995, Trends in cell biology.

[67]  Stephan J. Sigrist,et al.  Bruchpilot, a Protein with Homology to ELKS/CAST, Is Required for Structural Integrity and Function of Synaptic Active Zones in Drosophila , 2006, Neuron.

[68]  A. Mauro,et al.  DEPLETION OF VESICLES FROM FROG NEUROMUSCULAR JUNCTIONS BY PROLONGED TETANIC STIMULATION , 1972, The Journal of cell biology.

[69]  C. Garner,et al.  The presynaptic cytomatrix of brain synapses , 2001, Cellular and Molecular Life Sciences CMLS.

[70]  C. Serra-Pages,et al.  Liprins, a Family of LAR Transmembrane Protein-tyrosine Phosphatase-interacting Proteins* , 1998, The Journal of Biological Chemistry.

[71]  Christian Rosenmund,et al.  Clathrin regenerates synaptic vesicles from endosomes , 2014, Nature.

[72]  S. Faraone,et al.  Molecular genetics of attention deficit hyperactivity disorder. , 2010, The Psychiatric clinics of North America.

[73]  Kristina D Micheva,et al.  Strong Effects of Subphysiological Temperature on the Function and Plasticity of Mammalian Presynaptic Terminals , 2005, The Journal of Neuroscience.

[74]  G. Zamponi,et al.  Neuronal Voltage-Gated Calcium Channels: Structure, Function, and Dysfunction , 2014, Neuron.

[75]  D. Pietrobon,et al.  CaV2.1 channelopathies , 2010, Pflügers Archiv - European Journal of Physiology.

[76]  H. Lerche,et al.  Generalized epilepsy with febrile seizures plus , 2001, Neurology.

[77]  M. Laruelle,et al.  Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies , 1999, Journal of psychopharmacology.

[78]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.

[79]  O. Pascual,et al.  A common molecular basis for membrane docking and functional priming of synaptic vesicles , 2009, The European journal of neuroscience.

[80]  C. Limbach,et al.  Molecular in situ topology of Aczonin/Piccolo and associated proteins at the mammalian neurotransmitter release site , 2011, Proceedings of the National Academy of Sciences.

[81]  P. De Camilli,et al.  Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. , 1989, The EMBO journal.

[82]  W. Betz,et al.  Synaptic vesicle pools , 2005, Nature Reviews Neuroscience.

[83]  Harvey T. McMahon,et al.  Molecular mechanism and physiological functions of clathrin-mediated endocytosis , 2011, Nature Reviews Molecular Cell Biology.

[84]  Silvio O. Rizzoli,et al.  Synaptic Vesicle Pools: An Update , 2010, Front. Syn. Neurosci..

[85]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[86]  B. Pearse,et al.  Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[87]  J. Heuser The origins and evolution of freeze-etch electron microscopy. , 2011, Journal of electron microscopy.

[88]  Tobias Moser,et al.  Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells , 2009, Proceedings of the National Academy of Sciences.

[89]  Harald F. Hess,et al.  Imaging the post-fusion release and capture of a vesicle membrane protein , 2012, Nature Communications.

[90]  Kelsey C. Martin,et al.  Synapse Formation and mRNA Localization in Cultured Aplysia Neurons , 2006, Neuron.

[91]  Paul J. Harrison,et al.  Cerebellar synaptic protein expression in schizophrenia , 2001, Neuroscience.

[92]  O. Combarros,et al.  Magnetic resonance imaging findings of leg musculature in Charcot-Marie-Tooth disease type 2 due to dynamin 2 mutation , 2008, Journal of Neurology.

[93]  H. V. Gersdorff,et al.  Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals , 1994, Nature.

[94]  O. Bozdagi,et al.  Axonal cap‐dependent translation regulates presynaptic p35 , 2014, Developmental neurobiology.

[95]  V. Lučić,et al.  Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography , 2010, The Journal of cell biology.

[96]  A. Koster,et al.  Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy. , 2013, Journal of structural biology.

[97]  M. Dalva,et al.  Defects in Synapse Structure and Function Precede Motor Neuron Degeneration in Drosophila Models of FUS-Related ALS , 2013, The Journal of Neuroscience.

[98]  M. Jackson,et al.  Different domains of synaptotagmin control the choice between kiss-and-run and full fusion , 2003, Nature.

[99]  H. von Gersdorff,et al.  Synaptic vesicle endocytosis at a CNS nerve terminal: faster kinetics at physiological temperatures and increased endocytotic capacity during maturation. , 2007, Journal of neurophysiology.

[100]  D. Owald,et al.  Maturation of active zone assembly by Drosophila Bruchpilot , 2009, The Journal of cell biology.

[101]  V. Haucke,et al.  Synaptic requiem: a duet for Piccolo and Bassoon , 2013, The EMBO journal.

[102]  T. Südhof,et al.  RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. , 1998, Annual review of neuroscience.

[103]  J. Tao-Cheng Activity-related redistribution of presynaptic proteins at the active zone , 2006, Neuroscience.

[104]  C. Stigloher,et al.  Presynaptic architecture of the larval zebrafish neuromuscular junction , 2015, The Journal of comparative neurology.

[105]  K. Martin,et al.  Synapse- and Stimulus-Specific Local Translation During Long-Term Neuronal Plasticity , 2009, Science.

[106]  Wilson Mc,et al.  Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25 , 1994 .

[107]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[108]  Alberto Diaspro,et al.  STED nanoscopy: a glimpse into the future , 2015, Cell and Tissue Research.

[109]  眞野 脩 バーナード理論における Lateral Organization の位置 , 1989 .

[110]  M. Frotscher,et al.  Structural plasticity of hippocampal mossy fiber synapses as revealed by high‐pressure freezing , 2012, The Journal of comparative neurology.

[111]  G A Zampighi,et al.  Conical tomography II: A method for the study of cellular organelles in thin sections. , 2005, Journal of structural biology.

[112]  P. Sterling,et al.  Synaptic Ribbon Conveyor Belt or Safety Belt? , 2003, Neuron.

[113]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[114]  R. Cerini,et al.  Two novel mutations in dynamin-2 cause axonal Charcot–Marie–Tooth disease , 2007, Neurology.

[115]  Hwan‐Ching Tai,et al.  Axonal Translation of β-Catenin Regulates Synaptic Vesicle Dynamics , 2013, The Journal of Neuroscience.

[116]  S. Schacher,et al.  Protein synthesis at synapse versus cell body: enhanced but transient expression of long-term facilitation at isolated synapses. , 2003, Journal of neurobiology.

[117]  William A Catterall,et al.  Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology , 2010, Neuron.

[118]  Yukihiro Nakamura,et al.  Ca2+ Channel to Synaptic Vesicle Distance Accounts for the Readily Releasable Pool Kinetics at a Functionally Mature Auditory Synapse , 2015, The Journal of Neuroscience.

[119]  M. Sala,et al.  SNAP‐25 in Neuropsychiatric Disorders , 2009, Annals of the New York Academy of Sciences.

[120]  Philip D. Welch,et al.  Σ * Fine Structure , 2010 .

[121]  T. Kawano,et al.  Identification of Genes Involved in Synaptogenesis Using a Fluorescent Active Zone Marker in Caenorhabditis elegans , 2005, The Journal of Neuroscience.

[122]  T. Südhof,et al.  Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle , 2013, Neuron.

[123]  J. Dubochet,et al.  The mammalian central nervous synaptic cleft contains a high density of periodically organized complexes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[124]  Christian Rosenmund,et al.  Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[125]  M. Gold A frontier in the understanding of synaptic plasticity: Solving the structure of the postsynaptic density , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[126]  Naomichi Matsumoto,et al.  De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy , 2008, Nature Genetics.

[127]  Mark Ellisman,et al.  Liprin-α/SYD-2 determines the size of dense projections in presynaptic active zones in C. elegans , 2013, The Journal of cell biology.

[128]  T. Bonhoeffer,et al.  Live-cell imaging of dendritic spines by STED microscopy , 2008, Proceedings of the National Academy of Sciences.

[129]  Francis J. McMahon,et al.  Gene Expression and Genetic Variation Data Implicate PCLO in Bipolar Disorder , 2011, Biological Psychiatry.

[130]  Mei Zhen,et al.  The Presynaptic Dense Projection of the Caenorhabiditis elegans Cholinergic Neuromuscular Junction Localizes Synaptic Vesicles at the Active Zone through SYD-2/Liprin and UNC-10/RIM-Dependent Interactions , 2011, The Journal of Neuroscience.

[131]  M. Pécot-Dechavassine,et al.  [Synaptic vesicles and pouches at the level of "active zones" of the neuromuscular junction]. , 1970, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles.

[132]  Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1. , 2002, The Journal of cell biology.

[133]  L M Zampighi,et al.  Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. , 2006, Biophysical journal.

[134]  C. Garner,et al.  Molecular mechanisms of presynaptic differentiation. , 2008, Annual review of cell and developmental biology.

[135]  X. Zhuang,et al.  Superresolution Imaging of Chemical Synapses in the Brain , 2010, Neuron.

[136]  T. Südhof,et al.  A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[137]  Paul Greengard,et al.  Three-Dimensional Architecture of Presynaptic Terminal Cytomatrix , 2007, The Journal of Neuroscience.

[138]  N. Wray,et al.  Genomewide Association for Major Depressive Disorder: A possible role for the presynaptic protein Piccolo , 2008, Molecular Psychiatry.

[139]  C. Hoogenraad,et al.  Synapse Pathology in Psychiatric and Neurologic Disease , 2010, Current neurology and neuroscience reports.

[140]  H. Robertson,et al.  Calcium channel γ subunits provide insights into the evolution of this gene family , 2001 .

[141]  J. Bessereau,et al.  UNC-13 and UNC-10/Rim Localize Synaptic Vesicles to Specific Membrane Domains , 2006, The Journal of Neuroscience.

[142]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[143]  M. Wilson,et al.  Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25. , 1994, Gene.

[144]  M. Frotscher,et al.  Fine structure of hippocampal mossy fiber synapses following rapid high‐pressure freezing , 2012, Epilepsia.

[145]  Masahiko Watanabe,et al.  Quantitative Localization of Cav2.1 (P/Q-Type) Voltage-Dependent Calcium Channels in Purkinje Cells: Somatodendritic Gradient and Distinct Somatic Coclustering with Calcium-Activated Potassium Channels , 2013, The Journal of Neuroscience.

[146]  Melissa M. Harrison,et al.  A CRISPR view of development , 2014, Genes & development.

[147]  T. Schikorski Readily releasable vesicles recycle at the active zone of hippocampal synapses , 2014, Proceedings of the National Academy of Sciences.

[148]  A. Beggs,et al.  Mutations in dynamin 2 cause dominant centronuclear myopathy. , 2005, Nature genetics.

[149]  H. von Gersdorff,et al.  Structure suggests function: the case for synaptic ribbons as exocytotic nanomachines , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[150]  C. Hoogenraad,et al.  Liprin-α proteins: scaffold molecules for synapse maturation , 2007 .

[151]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[152]  B. Humbel,et al.  Integrated fluorescence and transmission electron microscopy. , 2008, Journal of structural biology.

[153]  K. L. Gardner,et al.  The voltage‐gated calcium channel UNC‐2 is involved in stress‐mediated regulation of tryptophan hydroxylase , 2003, Journal of neurochemistry.

[154]  S. Palay,et al.  THE FINE STRUCTURE OF NEURONS , 1955, The Journal of biophysical and biochemical cytology.

[155]  P. Verstreken,et al.  Dynamin photoinactivation blocks Clathrin and α-adaptin recruitment and induces bulk membrane retrieval , 2014, The Journal of cell biology.

[156]  D. Sharp,et al.  Transmission electron microscopy of thin sections of Drosophila: high-pressure freezing and freeze-substitution. , 2012, Cold Spring Harbor protocols.

[157]  P. Greengard Neuronal phosphoproteins , 2008, Molecular Neurobiology.

[158]  J. Richmond,et al.  Differential Regulation of Synaptic Vesicle Tethering and Docking by UNC-18 and TOM-1 , 2010, Front. Syn. Neurosci..

[159]  A. Dolphin The α2δ subunits of voltage-gated calcium channels. , 2013, Biochimica et Biophysica Acta.

[160]  Philippe Rostaing,et al.  Preservation of Immunoreactivity and Fine Structure of Adult C. elegans Tissues Using High-pressure Freezing , 2004, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[161]  Leon Lagnado,et al.  Clathrin-Mediated Endocytosis Is the Dominant Mechanism of Vesicle Retrieval at Hippocampal Synapses , 2006, Neuron.

[162]  E. Zrenner,et al.  Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. , 2006, American journal of human genetics.

[163]  J. Brandstätter,et al.  Ribbon synapses of the retina , 2006, Cell and Tissue Research.

[164]  Shoh M. Asano,et al.  Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering , 2013, The Journal of cell biology.

[165]  G A Zampighi,et al.  Conical tomography of freeze-fracture replicas: a method for the study of integral membrane proteins inserted in phospholipid bilayers. , 2005, Journal of structural biology.

[166]  Wei Feng,et al.  Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density , 2009, Nature Reviews Neuroscience.

[167]  F. F. De-Miguel,et al.  Regulation of Synaptic Vesicle Docking by Different Classes of Macromolecules in Active Zone Material , 2012, PloS one.

[168]  L. Lagnado,et al.  Modes of Vesicle Retrieval at Ribbon Synapses, Calyx-Type Synapses, and Small Central Synapses , 2007, The Journal of Neuroscience.

[169]  T. Reese,et al.  The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse , 1988, Neuron.

[170]  Ok-Ho Shin,et al.  Exocytosis and synaptic vesicle function. , 2014, Comprehensive Physiology.

[171]  S. Schoch,et al.  RIM proteins and their role in synapse function , 2010, Biological chemistry.

[172]  Ji Han Kim,et al.  A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. , 2011, Human molecular genetics.

[173]  E. Wright,et al.  Conical Electron Tomography of a Chemical Synapse: Polyhedral Cages Dock Vesicles to the Active Zone , 2008, The Journal of Neuroscience.

[174]  T. Reese,et al.  Structural changes after transmitter release at the frog neuromuscular junction , 1981, The Journal of cell biology.

[175]  Z. Sellers,et al.  Calcium channel gamma subunits: a functionally diverse protein family. , 2007, Cell biochemistry and biophysics.

[176]  D. Hunt,et al.  Genomic organisation and alternative splicing of human RIM1, a gene implicated in autosomal dominant cone-rod dystrophy (CORD7). , 2003, Genomics.

[177]  E. De robertis,et al.  SOME FEATURES OF THE SUBMICROSCOPIC MORPHOLOGY OF SYNAPSES IN FROG AND EARTHWORM , 1955, The Journal of biophysical and biochemical cytology.

[178]  David Owen,et al.  Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. , 2014, Cold Spring Harbor perspectives in biology.

[179]  M. Jog,et al.  VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families. , 2012, American journal of human genetics.

[180]  I. de Curtis,et al.  Plasma membrane–associated platforms: Dynamic scaffolds that organize membrane-associated events , 2015, Science Signaling.

[181]  T. Moser,et al.  Otoferlin: a multi-C2 domain protein essential for hearing , 2012, Trends in Neurosciences.

[182]  Christian Rosenmund,et al.  Molecular mechanisms of active zone function , 2003, Current Opinion in Neurobiology.

[183]  J. Eilers,et al.  Rapid Active Zone Remodeling during Synaptic Plasticity , 2011, The Journal of Neuroscience.

[184]  F. Deák Neuronal vesicular trafficking and release in age-related cognitive impairment. , 2014, The journals of gerontology. Series A, Biological sciences and medical sciences.

[185]  Yamato Hida,et al.  CAST and ELKS proteins: structural and functional determinants of the presynaptic active zone. , 2010, Journal of biochemistry.

[186]  Manuela Schmidt,et al.  The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles , 2013, The Journal of cell biology.

[187]  Leena Peltonen,et al.  Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. , 2003, American journal of human genetics.

[188]  Masahiko Watanabe,et al.  Release probability of hippocampal glutamatergic terminals scales with the size of the active zone , 2012, Nature Neuroscience.

[189]  Thomas C. Südhof,et al.  Complexins Regulate a Late Step in Ca2+-Dependent Neurotransmitter Release , 2001, Cell.

[190]  Felipe Opazo,et al.  Fluorescent in situ hybridization of synaptic proteins imaged with super‐resolution STED microscopy , 2014, Microscopy research and technique.

[191]  T. Südhof,et al.  Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. , 1991, The Journal of biological chemistry.

[192]  T. Blanpied,et al.  Lateral organization of the postsynaptic density , 2011, Molecular and Cellular Neuroscience.

[193]  S. Züchner,et al.  Molecular genetics of autosomal-dominant axonal Charcot-Marie-Tooth disease , 2007, NeuroMolecular Medicine.

[194]  D. DiGregorio,et al.  Measurement of Action Potential-Induced Presynaptic Calcium Domains at a Cultured Neuromuscular Junction , 1999, The Journal of Neuroscience.

[195]  D I Boomsma,et al.  Joint reanalysis of 29 correlated SNPs supports the role of PCLO/Piccolo as a causal risk factor for major depressive disorder , 2009, Molecular Psychiatry.

[196]  Maria A. Rudzinska,et al.  10 – The Fine Structure* , 1968 .

[197]  J. Hell,et al.  Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[198]  V. Haucke,et al.  Molecular Mechanisms of Presynaptic Membrane Retrieval and Synaptic Vesicle Reformation , 2015, Neuron.

[199]  A. Egner,et al.  Bassoon and the Synaptic Ribbon Organize Ca2+ Channels and Vesicles to Add Release Sites and Promote Refilling , 2010, Neuron.

[200]  Annette C. Dolphin,et al.  β Subunits of Voltage-Gated Calcium Channels , 2003, Journal of bioenergetics and biomembranes.

[201]  H. Robertson,et al.  Calcium channel gamma subunits provide insights into the evolution of this gene family. , 2001, Gene.

[202]  P. De Camilli,et al.  Piccolo, a novel 420 kDa protein associated with the presynaptic cytomatrix. , 1996, European journal of cell biology.

[203]  E. Neher,et al.  Protein scaffolds in the coupling of synaptic exocytosis and endocytosis , 2011, Nature Reviews Neuroscience.

[204]  Kendal Broadie,et al.  Drosophila Unc-13 is essential for synaptic transmission , 1999, Nature Neuroscience.

[205]  T. Südhof,et al.  A small GTP-binding protein dissociates from synaptic vesicles during exocytosis , 1991, Nature.

[206]  Stefan W. Hell,et al.  Protein localization in electron micrographs using fluorescence nanoscopy , 2010, Nature Methods.

[207]  Stephan J. Sigrist,et al.  RIM-Binding Protein, a Central Part of the Active Zone, Is Essential for Neurotransmitter Release , 2011, Science.

[208]  O. Shupliakov,et al.  Two pools of vesicles associated with the presynaptic cytosolic projection in Drosophila neuromuscular junctions. , 2010, Journal of structural biology.

[209]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[210]  T. Mayer,et al.  Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. , 2000, American journal of human genetics.

[211]  R. L. Steere Freeze-fracture: a personal history. , 1989, Journal of electron microscopy technique.

[212]  D. Zack,et al.  Clinical and genetic studies of an autosomal dominant cone-rod dystrophy with features of Stargardt disease. , 1999, Ophthalmic genetics.

[213]  C. Garner,et al.  Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation , 2013, The EMBO journal.

[214]  R. Hosono,et al.  The unc‐18 Gene Encodes a Novel Protein Affecting the Kinetics of Acetylcholine Metabolism in the Nematode Caenorhabditis elegans , 1992, Journal of neurochemistry.