Arsenic sorption on TiO2 nanoparticles: size and crystallinity effects.

[1]  Armand Masion,et al.  Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[2]  Jiaguo Yu,et al.  EFFECTS OF HYDROTHERMAL TEMPERATURE AND TIME ON THE PHOTOCATALYTIC ACTIVITY AND MICROSTRUCTURES OF BIMODAL MESOPOROUS TIO2 POWDERS , 2007 .

[3]  S. Al-Abed,et al.  Arsenic release from iron rich mineral processing waste: Influence of pH and redox potential. , 2007, Chemosphere.

[4]  Rajender S. Varma,et al.  Thermally Stable Nanocrystalline TiO2 Photocatalysts Synthesized via Sol−Gel Methods Modified with Ionic Liquid and Surfactant Molecules , 2006 .

[5]  Xiaoguang Meng,et al.  Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. , 2006, Environmental science & technology.

[6]  J. Banfield,et al.  Nanoparticulate Iron Oxide Minerals in Soils and Sediments: Unique Properties and Contaminant Scavenging Mechanisms , 2005 .

[7]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[8]  Zheshen Li,et al.  XPS and FTIR investigation of the surface properties of different prepared titania nano-powders , 2005 .

[9]  Manish Patel,et al.  Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. , 2005, Water research.

[10]  Janet G Hering,et al.  TiO2-photocatalyzed As(II) oxidation in aqueous suspensions: reaction kinetics and effects of adsorption. , 2005, Environmental science & technology.

[11]  D. Sparks,et al.  Formation of metal-arsenate precipitates at the goethite-water interface. , 2004, Environmental science & technology.

[12]  V. Sharma,et al.  Adsorption of arsenate and arsenite on titanium dioxide suspensions. , 2004, Journal of colloid and interface science.

[13]  Janet G Hering,et al.  Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. , 2003, Environmental science & technology.

[14]  J. A. Ryan,et al.  Sorption of arsenate and arsenite on RuO2 x xH2O: a spectroscopic and macroscopic study. , 2003, Environmental science & technology.

[15]  Fu Honggang,et al.  The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity , 2003 .

[16]  M. L. Hunt,et al.  Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. , 2002, Environmental science & technology.

[17]  Hyunjoon Lee,et al.  Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. , 2002, Environmental science & technology.

[18]  D. Sparks,et al.  X-ray Absorption Spectroscopic Investigation of Arsenite and Arsenate Adsorption at the Aluminum Oxide-Water Interface. , 2001, Journal of colloid and interface science.

[19]  L. Axe,et al.  A Comparison of Strontium Sorption to Hydrous Aluminum, Iron, and Manganese Oxides. , 1999, Journal of colloid and interface science.

[20]  A. J. McQuillan,et al.  Phosphate Adsorption onto TiO2 from Aqueous Solutions: An in Situ Internal Reflection Infrared Spectroscopic Study , 1999 .

[21]  Scott Fendorf,et al.  Surface Structures and Stability of Arsenic(III) on Goethite: Spectroscopic Evidence for Inner-Sphere Complexes , 1998 .

[22]  G. Waychunas,et al.  Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate , 1993 .

[23]  W. Stumm Chemistry of the solid-water interface , 1992 .

[24]  H. Bowen,et al.  High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties , 1985 .

[25]  H. Bowen,et al.  High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetratethoxide. 2. Aqueous interfacial electrochemistry and dispersion stability , 1985 .

[26]  J. Leckie,et al.  MULTIPLE-SITE ADSORPTION OF CD, CU, ZN, AND PB ON AMORPHOUS IRON OXYHYDROXIDE , 1981 .