Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua

[1]  A. Fitzsimmons,et al.  1I/'Oumuamua is tumbling , 2017 .

[2]  Larry Denneau,et al.  A brief visit from a red and extremely elongated interstellar asteroid , 2017, Nature.

[3]  A. Fitzsimmons,et al.  Col-OSSOS: Colors of the Interstellar Planetesimal 1I/2017 U1 in Context with the Solar System , 2017 .

[4]  Michael Marsset,et al.  Col-OSSOS: Colors of the Interstellar Planetesimal 1I/‘Oumuamua , 2017, 1711.06214.

[5]  Ralf Kotulla,et al.  Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes , 2017, 1711.05687.

[6]  Andrew J. Connolly,et al.  APO Time-resolved Color Photometry of Highly Elongated Interstellar Object 1I/‘Oumuamua , 2017, 1711.04927.

[7]  Qicheng Zhang,et al.  1I/2017 U1 (‘Oumuamua) is Hot: Imaging, Spectroscopy, and Search of Meteor Activity , 2017, 1711.02320.

[8]  J. Bauer,et al.  The rotation period and shape of the hyperbolic asteroid A/2017 U1 from its lightcurve , 2017 .

[9]  Lori M. Feaga,et al.  On the Rotation Period and Shape of the Hyperbolic Asteroid 1I/‘Oumuamua (2017 U1) from Its Lightcurve , 2017, 1711.01402.

[10]  R. Jedicke,et al.  Minor Planets 2017 SN_33 and 2017 U1 , 2017 .

[11]  J. Masiero Palomar Optical Spectrum of Hyperbolic Near-Earth Object A/2017 U1 , 2017, 1710.09977.

[12]  Michael Marsset,et al.  Col-OSSOS: z-Band Photometry Reveals Three Distinct TNO Surface Types , 2017, 1708.03079.

[13]  F. Merlin,et al.  Taxonomy of trans-Neptunian objects and Centaurs as seen from spectroscopy , 2017 .

[14]  Urs Mall,et al.  Change of outgassing pattern of 67P/Churyumov–Gerasimenko during the March 2016 equinox as seen by ROSINA , 2017 .

[15]  Larry Denneau,et al.  An Observational Upper Limit on the Interstellar Number Density of Asteroids and Comets , 2017, 1702.02237.

[16]  Marco Micheli,et al.  Inner solar system material discovered in the Oort cloud , 2016, Science Advances.

[17]  A. Fitzsimmons,et al.  Distant activity of 67P/Churyumov-Gerasimenko in 2014: Ground-based results during the Rosetta pre-landing phase , 2016, 1602.01493.

[18]  M. Janson,et al.  TERRESTRIAL PLANETS ACROSS SPACE AND TIME , 2016, 1602.00690.

[19]  D. Jewitt COLOR SYSTEMATICS OF COMETS AND RELATED BODIES , 2015, 1510.07069.

[20]  S. Debei,et al.  Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations , 2015, 1509.02707.

[21]  Maria Teresa Capria,et al.  Asteroid thermophysical modeling , 2015, 1508.05575.

[22]  M. Banaszkiewicz,et al.  Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[23]  S. Debei,et al.  Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft , 2015, 1505.06888.

[24]  D. Koschny,et al.  On the Evolution of Comets , 2015 .

[25]  Andrew S. Rivkin,et al.  Astronomical Observations of Volatiles on Asteroids , 2015, 1502.06442.

[26]  W. Fraser,et al.  THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS , 2015, 1502.06612.

[27]  Vishnu Reddy,et al.  Mineralogy and Surface Composition of Asteroids , 2015, 1502.05008.

[28]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[29]  M. Belton,et al.  The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1 , 2013 .

[30]  A. Fitzsimmons,et al.  The nucleus of Comet 67P/Churyumov-Gerasimenko. A new shape model and thermophysical analysis , 2012 .

[31]  R. Manuputy,et al.  X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope , 2011, 1110.1944.

[32]  S. Green,et al.  Directional characteristics of thermal–infrared beaming from atmosphereless planetary surfaces – a new thermophysical model , 2011, 1211.1844.

[33]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[34]  D. Yeomans,et al.  Activity of comets at large heliocentric distances pre-perihelion , 2009 .

[35]  Dale P. Cruikshank,et al.  NEAR-INFRARED SPECTROSCOPY OF TROJAN ASTEROIDS: EVIDENCE FOR TWO COMPOSITIONAL GROUPS , 2008, 1012.1284.

[36]  Tibor Agócs,et al.  ACAM: a new imager/spectrograph for the William Herschel Telescope , 2008, Astronomical Telescopes + Instrumentation.

[37]  Elisabetta Dotto,et al.  Ion Irradiation of Frozen Methanol, Methane, and Benzene: Linking to the Colors of Centaurs and Trans-Neptunian Objects , 2006 .

[38]  F. Poulet,et al.  Spectral characteristics and modeling of the Transneptunian object (55565) 2002 AW197 and the Centaurs (55576) 2002 GB10 and (83982) 2002 GO9: ESO Large Program on TNOs and Centaurs , 2005 .

[39]  Gautham Narayan,et al.  Physical characteristics of Comet Nucleus C/2001 OG108 (LONEOS) , 2005 .

[40]  P. Weissman,et al.  Oort Cloud Formation and Dynamics , 2004 .

[41]  Alessandro Morbidelli,et al.  Coupling dynamical and collisional evolution of small bodies: an application to the early ejection of planetesimals from the Jupiter-Saturn region , 2003 .

[42]  N. Thomas,et al.  ESO Large Program on TNOs and Centaurs: Visible-IR Results , 2002 .

[43]  J. Carvano,et al.  Rotationally Resolved Spectra of Some S-type Asteroids , 2000 .

[44]  T. Owen,et al.  The Composition of Centaur 5145 Pholus , 1998 .

[45]  Randolph L. Kirk,et al.  Short-wavelength infrared (1.3–2.6 μm) observations of the nucleus of Comet 19P/Borrelly , 2004 .

[46]  P. Feldman,et al.  Spectroscopic Investigations of Fragment Species in the Coma , 2004 .

[47]  D. Jewitt From cradle to grave: the rise and demise of the comets , 2004 .