American option pricing with randomized quasi-Monte Carlo simulations

We study the pricing of American options using least-squares Monte Carlo combined with randomized quasi-Monte Carlo (RQMC), viewed as a variance reduction method. We find that RQMC reduces both the variance and the bias of the option price obtained in an out-of-sample evaluation of the retained policy, and improves the quality of the returned policy on average. Various sampling methods of the underlying stochastic processes are compared and the variance reduction is analyzed in terms of a functional ANOVA decomposition.

[1]  Christiane Lemieux,et al.  Randomized quasi-Monte Carlo: a tool for improving the efficiency of simulations in finance , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[2]  Ian H. Sloan,et al.  Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction , 2011, Oper. Res..

[3]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[4]  R. Caflisch,et al.  Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .

[5]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[6]  Philip Protter,et al.  An analysis of a least squares regression method for American option pricing , 2002, Finance Stochastics.

[7]  Daniel Z. Zanger Convergence of a Least‐Squares Monte Carlo Algorithm for Bounded Approximating Sets , 2009 .

[8]  Pierre L'Ecuyer,et al.  A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains , 2006, Oper. Res..

[9]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[10]  P. L’Ecuyer Computing Approximate Solutions to Markov Renewal Programs with Continuous State Spaces , 1989 .

[11]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[12]  Pierre L'Ecuyer,et al.  Quasi-Monte Carlo methods with applications in finance , 2008, Finance Stochastics.

[13]  G. Simons Great Expectations: Theory of Optimal Stopping , 1973 .

[14]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[15]  P. L’Ecuyer,et al.  On Array-RQMC for Markov Chains: Mapping Alternatives and Convergence Rates , 2008 .

[16]  Dawn Hunter,et al.  A stochastic mesh method for pricing high-dimensional American options , 2004 .

[17]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Vol. II , 1976 .

[18]  E. E. Myshetskaya,et al.  Monte Carlo estimators for small sensitivity indices , 2008, Monte Carlo Methods Appl..

[19]  Pierre L'Ecuyer,et al.  A Dynamic Programming Procedure for Pricing American-Style Asian Options , 2002, Manag. Sci..

[20]  Xiaoqun Wang,et al.  Constructing Robust Good Lattice Rules for Computational Finance , 2007, SIAM J. Sci. Comput..

[21]  Art B. Owen,et al.  Variance with alternative scramblings of digital nets , 2003, TOMC.

[22]  S. Chaudhary,et al.  American Options and the Lsm Algorithm: Quasi-Random Sequences and Brownian Bridges , 2005 .

[23]  Acknowledgments , 2006, Molecular and Cellular Endocrinology.

[24]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[25]  TuffinBruno,et al.  A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains , 2008 .

[26]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.

[27]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[28]  P. L'Ecuyer,et al.  Approximation and bounds in discrete event dynamic programming , 1983, The 23rd IEEE Conference on Decision and Control.

[29]  Lars Stentoft,et al.  Convergence of the Least Squares Monte Carlo Approach to American Option Valuation , 2004, Manag. Sci..

[30]  P. Glasserman,et al.  A Sotchastic Mesh Method for Pricing High-Dimensional American Options , 2004 .

[31]  F. J. Hickernell Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .

[32]  Christiane Lemieux,et al.  A study of variance reduction techniques for American option pricing , 2005, Proceedings of the Winter Simulation Conference, 2005..

[33]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[34]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[35]  Lars Stentoft Assessing the Least Squares Monte-Carlo Approach to American Option Valuation , 2004 .

[36]  D. Hunter Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .

[37]  Hatem Ben-Ameur,et al.  A Dynamic Programming Approach for Pricing Options Embedded in Bonds , 2004 .

[38]  Xiaoqun Wang,et al.  New Brownian bridge construction in quasi-Monte Carlo methods for computational finance , 2008, J. Complex..

[39]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[40]  Jiaqiao Hu,et al.  Simulation-based Algorithms for Markov Decision Processes (Communications and Control Engineering) , 2007 .

[41]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[42]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[43]  Pierre L'Ecuyer,et al.  Simulation of a Lévy process by PCA sampling to reduce the effective dimension , 2008, 2008 Winter Simulation Conference.