Sensitivity enhancement of Si nanowire field effect transistor biosensors using single trap phenomena.

Trapping-detrapping processes in nanostructures are generally considered to be destabilizing factors. However, we discovered a positive role for a single trap in the registration and transformation of useful signal. We use switching kinetics of current fluctuations generated by a single trap in the dielectric of liquid-gated nanowire field effect transistors (FETs) as a basic principle for a novel highly sensitive approach to monitor the gate surface potential. An increase in Si nanowire FET sensitivity of 400% was demonstrated.

[1]  Pengfei Dai,et al.  Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. , 2012, Nano letters.

[2]  M. J. Kirton,et al.  Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/ƒ) noise , 1989 .

[3]  J. Dufrêche,et al.  A silicon nanowire ion-sensitive field-effect transistor with elementary charge sensitivity , 2010, 1010.1232.

[4]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[5]  Charles M. Lieber,et al.  Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. , 2010, Nano letters.

[6]  Nitin K. Rajan,et al.  Optimal signal-to-noise ratio for silicon nanowire biochemical sensors. , 2011, Applied physics letters.

[7]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[8]  M. Reed,et al.  Semiconducting Nanowire Field-Effect Transistor Biomolecular Sensors , 2008, IEEE Transactions on Electron Devices.

[9]  Xuexin Duan,et al.  Performance limitations for nanowire/nanoribbon biosensors. , 2013, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[10]  C. Hu,et al.  A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors , 1990 .

[11]  A. Offenhäusser,et al.  Advanced performance and scalability of Si nanowire field-effect transistors analyzed using noise spectroscopy and gamma radiation techniques , 2013 .

[12]  Nitin K. Rajan,et al.  $\hbox{1}/f$ Noise of Silicon Nanowire BioFETs , 2010, IEEE Electron Device Letters.

[13]  M. Calame,et al.  Signal-to-noise ratio in dual-gated silicon nanoribbon field-effect sensors , 2010, 1010.3169.

[14]  G. Jung,et al.  Random telegraph noise analysis in time domain , 2000 .

[15]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[16]  Jing Li,et al.  Liquid and back gate coupling effect: toward biosensing with lowest detection limit. , 2014, Nano letters.

[17]  L.K.J. Vandamme,et al.  What Do We Certainly Know About $\hbox{1}/f$ Noise in MOSTs? , 2008, IEEE Transactions on Electron Devices.

[18]  Runsheng Wang,et al.  Random telegraph signal noise in gate-all-around silicon nanowire transistors featuring Coulomb-blockade characteristics , 2009 .

[19]  M. Schulz,et al.  Evaluation of the Coulomb energy for single‐electron interface trapping in sub‐μm metal‐oxide‐semiconductor field‐effect transistors , 1994 .

[20]  L.K.J. Vandamme,et al.  On the anomalous behavior of the relative amplitude of RTS noise , 1998 .

[21]  C. Schönenberger,et al.  Nernst limit in dual-gated Si-nanowire FET sensors. , 2010, Nano letters.

[22]  Ricardo Garcia,et al.  Detection of the early stage of recombinational DNA repair by silicon nanowire transistors. , 2012, Nano letters.

[23]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[24]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[25]  G. Bolt Determination of the Charge Density of Silica Sols , 1957 .

[26]  Albert van den Berg,et al.  Al2O3/silicon nanoISFET with near ideal nernstian response. , 2011, Nano letters.

[27]  E. P. Vandamme,et al.  Critical discussion on unified 1/f noise models for MOSFETs , 2000 .

[28]  Gengfeng Zheng,et al.  Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species , 2006, Nature Protocols.

[29]  M. Schulz,et al.  Coulomb energy of traps in semiconductor space‐charge regions , 1993 .

[30]  N Clément,et al.  One-by-one trap activation in silicon nanowire transistors. , 2010, Nature communications.

[31]  C. Fiegna,et al.  Reduction of RTS Noise in Small-Area MOSFETs Under Switched Bias Conditions and Forward Substrate Bias , 2010, IEEE Transactions on Electron Devices.

[32]  Maosheng Yao,et al.  Rapid flu diagnosis using silicon nanowire sensor. , 2012, Nano letters.

[33]  Gengfeng Zheng,et al.  Frequency domain detection of biomolecules using silicon nanowire biosensors. , 2010, Nano letters.

[34]  Yong-Zhong Xiong,et al.  Investigation of Low-Frequency Noise in N-Channel FinFETs From Weak to Strong Inversion , 2009, IEEE Transactions on Electron Devices.

[35]  P Martin-Gonthier,et al.  Novel Readout Circuit Architecture for CMOS Image Sensors Minimizing RTS Noise , 2011, IEEE Electron Device Letters.

[36]  Xuexin Duan,et al.  Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. , 2012, Nature nanotechnology.