Dynamic and rheological properties of soft biological cell suspensions

[1]  Zhangli Peng,et al.  Stability of the tank treading modes of erythrocytes and its dependence on cytoskeleton reference states , 2015, Journal of Fluid Mechanics.

[2]  Prosenjit Bagchi,et al.  Microparticle shape effects on margination, near-wall dynamics and adhesion in a three-dimensional simulation of red blood cell suspension. , 2015, Soft matter.

[3]  L. Brandt,et al.  The motion of a deforming capsule through a corner , 2014, Journal of Fluid Mechanics.

[4]  Zhiliang Xu,et al.  A fictitious domain method with a hybrid cell model for simulating motion of cells in fluid flow , 2015, J. Comput. Phys..

[5]  A. Beris,et al.  Modeling of human blood rheology in transient shear flows , 2015 .

[6]  R. Winkler,et al.  Dynamical and rheological properties of soft colloid suspensions , 2014 .

[7]  Roland Glowinski,et al.  Three‐dimensional numerical simulation of red blood cell motion in Poiseuille flows , 2014 .

[8]  P. Bagchi,et al.  Intermittency and synchronized motion of red blood cell dynamics in shear flow , 2014, Journal of Fluid Mechanics.

[9]  George Em Karniadakis,et al.  Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  He Li,et al.  Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. , 2014, Biophysical journal.

[11]  George Em Karniadakis,et al.  Large-scale dissipative particle dynamics simulations of self-assembled amphiphilic systems. , 2014, Chemical communications.

[12]  Chwee Teck Lim,et al.  Numerical modelling of a healthy/malaria-infected erythrocyte in shear flow using dissipative particle dynamics method , 2014 .

[13]  Scott L Diamond,et al.  Platelet dynamics in three-dimensional simulation of whole blood. , 2014, Biophysical journal.

[14]  Gerhard Gompper,et al.  Deformation and dynamics of red blood cells in flow through cylindrical microchannels. , 2014, Soft matter.

[15]  P. Bagchi,et al.  Comparison of erythrocyte dynamics in shear flow under different stress-free configurations , 2014 .

[16]  E. Shaqfeh,et al.  Loop subdivision surface boundary integral method simulations of vesicles at low reduced volume ratio in shear and extensional flow , 2014 .

[17]  A. Beris,et al.  Modeling of the blood rheology in steady-state shear flows , 2014 .

[18]  Qiang Zhu,et al.  Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton , 2014, Journal of Fluid Mechanics.

[19]  Markus Gross,et al.  Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects. , 2014, Soft matter.

[20]  Jonathan B. Freund,et al.  Numerical Simulation of Flowing Blood Cells , 2014 .

[21]  R. Singh,et al.  Lateral migration of a capsule in plane shear near a wall , 2013, Journal of Fluid Mechanics.

[22]  Boyce E. Griffith,et al.  Immersed Boundary Method for Variable Viscosity and Variable Density Problems Using Fast Constant-Coefficient Linear Solvers I: Numerical Method and Results , 2013, SIAM J. Sci. Comput..

[23]  G. Karniadakis,et al.  Computational Biorheology of Human Blood Flow in Health and Disease , 2013, Annals of Biomedical Engineering.

[24]  James J. Feng,et al.  Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage. , 2013, Biomicrofluidics.

[25]  Subra Suresh,et al.  Lipid bilayer and cytoskeletal interactions in a red blood cell , 2013, Proceedings of the National Academy of Sciences.

[26]  George E Karniadakis,et al.  Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations , 2013, Proceedings of the National Academy of Sciences.

[27]  Hong Zhao,et al.  Coarse-grained theory to predict the concentration distribution of red blood cells in wall-bounded Couette flow at zero Reynolds number , 2013 .

[28]  Hong Zhao,et al.  The dynamics of a non-dilute vesicle suspension in a simple shear flow , 2013, Journal of Fluid Mechanics.

[29]  Alireza Yazdani,et al.  Influence of membrane viscosity on capsule dynamics in shear flow , 2013, Journal of Fluid Mechanics.

[30]  Petia M. Vlahovska,et al.  Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. , 2013, Soft matter.

[31]  M. Socol,et al.  Full dynamics of a red blood cell in shear flow , 2012, Proceedings of the National Academy of Sciences.

[32]  P Bagchi,et al.  Analysis of membrane tank-tread of nonspherical capsules and red blood cells , 2012, The European physical journal. E, Soft matter.

[33]  George Em Karniadakis,et al.  Effect of chain chirality on the self-assembly of sickle hemoglobin. , 2012, Biophysical journal.

[34]  David N. Ku,et al.  Determination of Critical Parameters in Platelet Margination , 2012, Annals of Biomedical Engineering.

[35]  George Em Karniadakis,et al.  Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres , 2012, Journal of Fluid Mechanics.

[36]  M. Graham,et al.  Mechanism of margination in confined flows of blood and other multicomponent suspensions. , 2012, Physical review letters.

[37]  He Li,et al.  Modeling sickle hemoglobin fibers as one chain of coarse-grained particles. , 2012, Journal of biomechanics.

[38]  James J. Feng,et al.  How malaria parasites reduce the deformability of infected red blood cells. , 2012, Biophysical journal.

[39]  C. Lim,et al.  Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum , 2012, Cellular microbiology.

[40]  Alireza Yazdani,et al.  Three-dimensional numerical simulation of vesicle dynamics using a front-tracking method. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  P. Dimitrakopoulos,et al.  Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: Effects of the constitutive law and membrane modeling. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  G. Karniadakis,et al.  Blood–plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study , 2012, Physical biology.

[43]  Christophe Minetti,et al.  Shape diagram of vesicles in Poiseuille flow. , 2012, Physical review letters.

[44]  George Em Karniadakis,et al.  Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. , 2012, Biophysical journal.

[45]  Gerhard Gompper,et al.  Margination of white blood cells in microcapillary flow. , 2012, Physical review letters.

[46]  He Li,et al.  Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane. , 2012, Biophysical journal.

[47]  Amit Kumar,et al.  Accelerated boundary integral method for multiphase flow in non-periodic geometries , 2011, J. Comput. Phys..

[48]  James J. Feng,et al.  How malaria parasites reduce the deformability of infected RBC , 2012 .

[49]  Hong Zhao,et al.  The dynamics of a vesicle in a wall-bound shear flow , 2011 .

[50]  Subra Suresh,et al.  Multiscale Modeling of Red Blood Cell Mechanics and Blood Flow in Malaria , 2011, PLoS Comput. Biol..

[51]  James J. Feng,et al.  How malaria merozoites reduce the deformability of infected RBC , 2011 .

[52]  J. McWhirter,et al.  Deformation and clustering of red blood cells in microcapillary flows , 2011 .

[53]  G. Panasenko,et al.  Finite platelet size could be responsible for platelet margination effect. , 2011, Biophysical journal.

[54]  Prosenjit Bagchi,et al.  Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Gerhard Gompper,et al.  Predicting human blood viscosity in silico , 2011, Proceedings of the National Academy of Sciences.

[56]  E. Shaqfeh,et al.  Shear-induced platelet margination in a microchannel. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  George Biros,et al.  A fast algorithm for simulating vesicle flows in three dimensions , 2011, J. Comput. Phys..

[58]  Yohsuke Imai,et al.  Margination of red blood cells infected by Plasmodium falciparum in a microvessel. , 2011, Journal of biomechanics.

[59]  Aaron L. Fogelson,et al.  Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions , 2011, Journal of Fluid Mechanics.

[60]  Alexander Farutin,et al.  Three-dimensional vesicles under shear flow: numerical study of dynamics and phase diagram. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Petia M. Vlahovska,et al.  Dynamics of a compound vesicle in shear flow. , 2011, Physical review letters.

[62]  Hong Zhao,et al.  The dynamics of a vesicle in simple shear flow , 2011, Journal of Fluid Mechanics.

[63]  Dominique Barthès-Biesel,et al.  Modeling the motion of capsules in flow , 2011 .

[64]  He Li,et al.  A coarse-grain molecular dynamics model for sickle hemoglobin fibers. , 2011, Journal of the mechanical behavior of biomedical materials.

[65]  Subra Suresh,et al.  A microfabricated deformability-based flow cytometer with application to malaria. , 2011, Lab on a chip.

[66]  Georgios C. Georgiou,et al.  The influence of temperature on rheological properties of blood mixtures with different volume expanders—implications in numerical arterial hemodynamics simulations , 2011 .

[67]  Cyrus K. Aidun,et al.  The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules , 2010, Journal of Fluid Mechanics.

[68]  G E Karniadakis,et al.  Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation , 2010, Proceedings of the National Academy of Sciences.

[69]  G. Karniadakis,et al.  Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems , 2010, Annals of Biomedical Engineering.

[70]  P. Koumoutsakos,et al.  Coarse-grained molecular dynamics simulations of shear-induced instabilities of lipid bilayer membranes in water. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  George Em Karniadakis,et al.  A low-dimensional model for the red blood cell. , 2010, Soft matter.

[72]  M. Platt,et al.  Sickle cell biomechanics. , 2010, Annual review of biomedical engineering.

[73]  P. Bagchi,et al.  Rheology of a dilute suspension of liquid-filled elastic capsules. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  George Em Karniadakis,et al.  A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. , 2010, Biophysical journal.

[75]  Yohsuke Imai,et al.  Modeling of hemodynamics arising from malaria infection. , 2010, Journal of biomechanics.

[76]  Hong Zhao,et al.  A spectral boundary integral method for flowing blood cells , 2010, J. Comput. Phys..

[77]  Subra Suresh,et al.  Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease , 2010, MRS bulletin.

[78]  Petros Koumoutsakos,et al.  Non-periodic Molecular Dynamics simulations of coarse grained lipid bilayer in water , 2010, Comput. Math. Appl..

[79]  Qiang Zhu,et al.  Multiscale simulation of erythrocyte membranes. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  Nir S. Gov,et al.  Metabolic remodeling of the human red blood cell membrane , 2010, Proceedings of the National Academy of Sciences.

[81]  Dominique Barthès-Biesel,et al.  Capsule motion in flow: Deformation and membrane buckling , 2009 .

[82]  V Steinberg,et al.  Dynamics of a vesicle in general flow , 2009, Proceedings of the National Academy of Sciences.

[83]  Prosenjit Bagchi,et al.  Dynamics of nonspherical capsules in shear flow. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  G. Karniadakis,et al.  Shape Transformations of Membrane Vesicles from Amphiphilic Triblock Copolymers: A Dissipative Particle Dynamics Simulation Study , 2009 .

[85]  Sai K. Doddi,et al.  Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  J. McWhirter,et al.  Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries , 2009, Proceedings of the National Academy of Sciences.

[87]  V Steinberg,et al.  Phase diagram of single vesicle dynamical states in shear flow. , 2009, Physical review letters.

[88]  Petia M. Vlahovska,et al.  Vesicles in Poiseuille flow. , 2008, Physical review letters.

[89]  Tsorng-Whay Pan,et al.  International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information Dynamical Simulation of Red Blood Cell Rheology in Microvessels Tsorng-whay Pan and Tong Wang , 2022 .

[90]  Sai K. Doddi,et al.  Lateral migration of a capsule in a plane Poiseuille flow in a channel , 2008 .

[91]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[92]  Thomas Podgorski,et al.  Micro-macro link in rheology of erythrocyte and vesicle suspensions. , 2008, Biophysical journal.

[93]  George Em Karniadakis,et al.  Accurate coarse-grained modeling of red blood cells. , 2008, Physical review letters.

[94]  Ian Halliday,et al.  Lattice Boltzmann modelling of blood cell dynamics , 2008 .

[95]  Gwennou Coupier,et al.  Noninertial lateral migration of vesicles in bounded Poiseuille flow , 2008, 0803.3153.

[96]  J. Marshall,et al.  Micro-scale Dynamic Simulation of Erythrocyte–Platelet Interaction in Blood Flow , 2008, Annals of Biomedical Engineering.

[97]  H T Low,et al.  Tank-treading, swinging, and tumbling of liquid-filled elastic capsules in shear flow. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  Paul J. Atzberger,et al.  A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales , 2007, J. Comput. Phys..

[99]  A. Pries,et al.  Two-Dimensional Simulation of Red Blood Cell Deformation and Lateral Migration in Microvessels , 2007, Annals of Biomedical Engineering.

[100]  Subra Suresh,et al.  Cytoskeletal dynamics of human erythrocyte , 2007, Proceedings of the National Academy of Sciences.

[101]  Chaouqi Misbah,et al.  Rheology of a dilute suspension of vesicles. , 2007, Physical review letters.

[102]  M. Faivre,et al.  Swinging of red blood cells under shear flow. , 2007, Physical review letters.

[103]  H. Noguchi,et al.  Swinging and tumbling of fluid vesicles in shear flow. , 2006, Physical review letters.

[104]  Subra Suresh,et al.  Viscoelasticity of the human red blood cell , 2006, American journal of physiology. Cell physiology.

[105]  J. Freund Leukocyte Margination in a Model Microvessel , 2006 .

[106]  Y. Castier,et al.  Molecular mechanisms of the vascular responses to haemodynamic forces , 2006, Journal of internal medicine.

[107]  Victor Steinberg,et al.  Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. , 2006, Physical review letters.

[108]  Chaouqi Misbah,et al.  Vacillating breathing and tumbling of vesicles under shear flow. , 2006, Physical review letters.

[109]  Victor Steinberg,et al.  Orientation and dynamics of a vesicle in tank-treading motion in shear flow. , 2005, Physical review letters.

[110]  H. Noguchi,et al.  Shape transitions of fluid vesicles and red blood cells in capillary flows. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Hiroshi Noguchi,et al.  Dynamics of fluid vesicles in shear flow: effect of membrane viscosity and thermal fluctuations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  S. Suresh,et al.  Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. , 2005, Biophysical journal.

[113]  John Tsamopoulos,et al.  Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling , 2004, Journal of Fluid Mechanics.

[114]  Hiroshi Noguchi,et al.  Fluid vesicles with viscous membranes in shear flow. , 2004, Physical review letters.

[115]  Nicholas J White,et al.  Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. , 2004, Acta tropica.

[116]  O. Baskurt,et al.  Blood Rheology and Hemodynamics , 2003, Seminars in thrombosis and hemostasis.

[117]  L. Munn,et al.  Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. , 2003, Biophysical journal.

[118]  C. Pozrikidis,et al.  Modeling and Simulation of Capsules and Biological Cells , 2003 .

[119]  Dennis E. Discher,et al.  Polymer Vesicles , 2022 .

[120]  A. B. Metzner,et al.  Transient phenomena in thixotropic systems , 2002 .

[121]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[122]  Dennis E. Discher,et al.  Polymer vesicles : Materials science: Soft surfaces , 2002 .

[123]  G. Breyiannis,et al.  Simple Shear Flow of Suspensions of Elastic Capsules , 2000 .

[124]  D. Boal,et al.  Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. , 1998, Biophysical journal.

[125]  L. Allard,et al.  Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power. , 1998, Ultrasound in medicine & biology.

[126]  Saroja Ramanujan,et al.  Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities , 1998, Journal of Fluid Mechanics.

[127]  Seifert,et al.  Fluid Vesicles in Shear Flow. , 1996, Physical review letters.

[128]  S. Cowin,et al.  Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. , 1994 .

[129]  Q. Dou,et al.  Simulated formation of polymer domains in sickle hemoglobin. , 1993, Biophysical journal.

[130]  Seifert,et al.  Dual network model for red blood cell membranes. , 1992, Physical review letters.

[131]  H. Rehage,et al.  From two-dimensional model networks to microcapsules , 1992 .

[132]  D. Slaaf,et al.  Concentration profile of blood platelets differs in arterioles and venules. , 1992, The American journal of physiology.

[133]  E. Eckstein,et al.  Model of platelet transport in flowing blood with drift and diffusion terms. , 1991, Biophysical journal.

[134]  Shih-Chun Liu,et al.  Uncoupling of the spectrin-based skeleton from the lipid bilayer in sickled red cells. , 1991, Science.

[135]  Reinhard Lipowsky,et al.  The conformation of membranes , 1991, Nature.

[136]  M. Fabry,et al.  Sickle cell vaso-occlusion. , 1991, Hematology/oncology clinics of North America.

[137]  D K Kaul,et al.  Rate of deoxygenation and rheologic behavior of blood in sickle cell anemia. , 1991, Blood.

[138]  W. Helfrich,et al.  Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. , 1989, Physical review. A, General physics.

[139]  A. Tilles,et al.  The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. , 1987, Microvascular research.

[140]  R. Skalak,et al.  Motion of a tank-treading ellipsoidal particle in a shear flow , 1982, Journal of Fluid Mechanics.

[141]  A. Perelson,et al.  Kinetics of rouleau formation. I. A mass action approach with geometric features. , 1982, Biophysical journal.

[142]  Dominique Barthès-Biesel,et al.  The time-dependent deformation of a capsule freely suspended in a linear shear flow , 1981, Journal of Fluid Mechanics.

[143]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[144]  Timothy W. Secomb,et al.  ASME Centennial Historical Perspective Paper: Mechanics of Blood Flow , 1981 .

[145]  R. Skalak,et al.  Mechanics of blood flow. , 1981, Journal of biomechanical engineering.

[146]  R. Hochmuth,et al.  Red cell extensional recovery and the determination of membrane viscosity. , 1979, Biophysical journal.

[147]  Tyrrell Da,et al.  Liposomes - methodology and applications. , 1979 .

[148]  D. Tyrrell,et al.  Liposomes - methodology and applications. , 1979, Frontiers of biology.

[149]  H Schmid-Schönbein,et al.  The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. , 1978, Science.

[150]  C Argote-Olivera,et al.  [Sickle-cell anemia]. , 1977, La Prensa medica mexicana.

[151]  R. Skalak,et al.  Strain energy function of red blood cell membranes. , 1973, Biophysical journal.

[152]  G. Batchelor,et al.  The stress system in a suspension of force-free particles , 1970, Journal of Fluid Mechanics.

[153]  S Chien,et al.  Abnormal rheology of oxygenated blood in sickle cell anemia. , 1970, The Journal of clinical investigation.

[154]  S Chien,et al.  Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. , 1966, Journal of applied physiology.

[155]  E. Merrill,et al.  Rheology of human blood, near and at zero flow. Effects of temperature and hematocrit level. , 1963, Biophysical journal.

[156]  Norbert Willenbacher,et al.  Rheology of Disperse Systems , 2013, Nature.

[157]  Robin Fåhræus,et al.  THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES , 1931 .

[158]  Xuejin Li Shape transformations of bilayer vesicles from amphiphilic block copolymers: a dissipative particle dynamics simulation study , 2022 .