Finite Element Approximation of the Parabolic Fractional Obstacle Problem
暂无分享,去创建一个
[1] Ricardo H. Nochetto,et al. Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.
[2] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[3] J. Yahav. ON OPTIMAL STOPPING , 1966 .
[4] F. Bobaru,et al. Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .
[5] Enrique Otárola,et al. Convergence rates for the classical, thin and fractional elliptic obstacle problems , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[6] Wen Chen. A speculative study of fractional Laplacian modeling of turbulence , 2006 .
[7] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[8] Ricardo H. Nochetto,et al. Positivity preserving finite element approximation , 2002, Math. Comput..
[9] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[10] Jan S. Hesthaven,et al. Numerical Approximation of the Fractional Laplacian via hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hp$$\end{doc , 2014, Journal of Scientific Computing.
[11] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[12] B. Turesson,et al. Nonlinear Potential Theory and Weighted Sobolev Spaces , 2000 .
[13] R. K. Vasil'ev. On the order of an approximation of functions on sets of positive measure by linear positive polynomial operators , 1973 .
[14] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .
[15] J. Heinonen,et al. Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .
[16] A. Kufner. Weighted Sobolev Spaces , 1985 .
[17] L. Caffarelli,et al. An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.
[18] Giuseppe Savare',et al. A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .
[19] Ricardo H. Nochetto,et al. Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications , 2014, Numerische Mathematik.
[20] F. Hirata,et al. An integral equation theory for inhomogeneous molecular fluids: the reference interaction site model approach. , 2008, The Journal of chemical physics.
[21] D. Zorica,et al. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes , 2014 .
[22] D. Kinderlehrer,et al. An introduction to variational inequalities and their applications , 1980 .
[23] Vicente Grau,et al. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization , 2014, Journal of The Royal Society Interface.
[24] Arshak Petrosyan,et al. The Two-Phase Fractional Obstacle Problem , 2012, SIAM J. Math. Anal..
[25] Alessio Figalli,et al. Regularity of solutions to the parabolic fractional obstacle problem , 2011, 1101.5170.
[26] Ricardo H. Nochetto,et al. A posteriori error analysis for a class of integral equations and variational inequalities , 2010, Numerische Mathematik.
[27] Ricardo H. Nochetto,et al. A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..
[28] G. Burton. Sobolev Spaces , 2013 .
[29] S. Levendorskii,et al. PRICING OF THE AMERICAN PUT UNDER LÉVY PROCESSES , 2004 .
[30] Ricardo H. Nochetto,et al. A PDE Approach to Space-Time Fractional Parabolic Problems , 2014, SIAM J. Numer. Anal..
[31] Giuseppe Savare',et al. A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .
[32] D. Lieberman,et al. Fourier analysis , 2004, Journal of cataract and refractive surgery.