Finite Element Approximation of the Parabolic Fractional Obstacle Problem

We study a discretization technique for the parabolic fractional obstacle problem in bounded domains. The fractional Laplacian is realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic equation posed on a semi-infinite cylinder, which recasts our problem as a quasi-stationary elliptic variational inequality with a dynamic boundary condition. The rapid decay of the solution suggests a truncation that is suitable for numerical approximation. We discretize the truncation with a backward Euler scheme in time and, for space, we use first-degree tensor product finite elements. We present an error analysis based on different smoothness assumptions

[1]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[2]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[3]  J. Yahav ON OPTIMAL STOPPING , 1966 .

[4]  F. Bobaru,et al.  Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .

[5]  Enrique Otárola,et al.  Convergence rates for the classical, thin and fractional elliptic obstacle problems , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Wen Chen A speculative study of fractional Laplacian modeling of turbulence , 2006 .

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  Ricardo H. Nochetto,et al.  Positivity preserving finite element approximation , 2002, Math. Comput..

[9]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[10]  Jan S. Hesthaven,et al.  Numerical Approximation of the Fractional Laplacian via hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hp$$\end{doc , 2014, Journal of Scientific Computing.

[11]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[12]  B. Turesson,et al.  Nonlinear Potential Theory and Weighted Sobolev Spaces , 2000 .

[13]  R. K. Vasil'ev On the order of an approximation of functions on sets of positive measure by linear positive polynomial operators , 1973 .

[14]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[15]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[16]  A. Kufner Weighted Sobolev Spaces , 1985 .

[17]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[18]  Giuseppe Savare',et al.  A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .

[19]  Ricardo H. Nochetto,et al.  Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications , 2014, Numerische Mathematik.

[20]  F. Hirata,et al.  An integral equation theory for inhomogeneous molecular fluids: the reference interaction site model approach. , 2008, The Journal of chemical physics.

[21]  D. Zorica,et al.  Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes , 2014 .

[22]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[23]  Vicente Grau,et al.  Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization , 2014, Journal of The Royal Society Interface.

[24]  Arshak Petrosyan,et al.  The Two-Phase Fractional Obstacle Problem , 2012, SIAM J. Math. Anal..

[25]  Alessio Figalli,et al.  Regularity of solutions to the parabolic fractional obstacle problem , 2011, 1101.5170.

[26]  Ricardo H. Nochetto,et al.  A posteriori error analysis for a class of integral equations and variational inequalities , 2010, Numerische Mathematik.

[27]  Ricardo H. Nochetto,et al.  A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..

[28]  G. Burton Sobolev Spaces , 2013 .

[29]  S. Levendorskii,et al.  PRICING OF THE AMERICAN PUT UNDER LÉVY PROCESSES , 2004 .

[30]  Ricardo H. Nochetto,et al.  A PDE Approach to Space-Time Fractional Parabolic Problems , 2014, SIAM J. Numer. Anal..

[31]  Giuseppe Savare',et al.  A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .

[32]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.