XTOR-2F: A fully implicit Newton-Krylov solver applied to nonlinear 3D extended MHD in tokamaks

XTOR-2F solves a set of extended magnetohydrodynamic (MHD) equations in toroidal tokamak geometry. In the original XTOR code, the time stepping is handled by a semi-implicit method [1-3]. Moderate changes were necessary to transform it into a fully implicit one using the NITSOL library with Newton-Krylov methods of solution for nonlinear system of equations [4]. After addressing the sensitive issue of preconditioning and time step tuning, the performances of the semi-implicit and the implicit methods are compared for the nonlinear simulation of an internal kink mode test case within the framework of resistive MHD including anisotropic thermal transport. A convergence study comparing the semi-implicit and the implicit schemes is presented. Our main conclusion is that on one hand the Newton-Krylov implicit method, when applied to basic one fluid MHD is more computationally costly than the semi-implicit one by a factor 3 for a given numerical accuracy. But on the other hand, the implicit method allows to address challenging issues beyond MHD. By testing the Newton-Krylov method with diamagnetic modifications on the dynamics of the internal kink, some numerical issues, to be addressed further, are emphasized.

[1]  T. H. Stix,et al.  THERMAL CONDUCTIVITY AND LOW FREQUENCY WAVES IN COLLISIONAL PLASMAS. , 1970 .

[2]  Jet Efda Contributors,et al.  Modelling of (2,1) NTM threshold in JET advanced scenarios , 2010 .

[3]  Homer F. Walker,et al.  NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..

[4]  M. Ottaviani,et al.  From MHD regime to quiescent non-inductive discharges in Tore Supra: experimental observations and MHD modelling , 2009 .

[5]  J. L. Soule,et al.  Internal kink modes in toroidal plasmas with circular cross sections , 1975 .

[6]  Boris B. Kadomtsev,et al.  Reviews of Plasma Physics , 2012 .

[7]  Hinrich Lütjens,et al.  The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas , 2008, J. Comput. Phys..

[8]  Luis Chacón,et al.  Jacobian–Free Newton–Krylov Methods for the Accurate Time Integration of Stiff Wave Systems , 2005, J. Sci. Comput..

[9]  Hinrich Lütjens,et al.  Linear and nonlinear thresholds of neoclassical tearing modes in tokamaks , 2002 .

[10]  Xavier Garbet,et al.  Curvature effects on the dynamics of tearing modes in tokamaks , 2001 .

[11]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[12]  Linda E. Sugiyama,et al.  A nonlinear two-fluid model for toroidal plasmas , 2000 .

[13]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[14]  X. Garbet,et al.  Nonlinear magnetohydrodynamic simulation of Tore Supra hollow current profile discharges , 2007 .

[15]  K Lerbinger,et al.  A new semi-implicit method for MHD computations , 1991 .

[16]  A. Bondeson,et al.  Resistive toroidal stability of internal kink modes in circular and shaped tokamaks , 1992 .

[17]  L. Chacón,et al.  A non-staggered, conservative, V×B=0' finite-volume scheme for 3D implicit extended magnetohydrodynamics in curvilinear geometries , 2004, Comput. Phys. Commun..

[18]  D. A. Knoll,et al.  A 2D high-ß Hall MHD implicit nonlinear solver , 2003 .

[19]  Hinrich Lütjens,et al.  Stability thresholds for ballooning modes driven by high β internal kinks , 1997 .

[20]  Hinrich Lütjens,et al.  Stochastic couplings of neoclassical tearing modes in ITER plasmas , 2006 .

[21]  H. Lütjens Toroidal simulations of nonlinear thresholds and saturations of classical and neoclassical tearing instabilities , 2004, Comput. Phys. Commun..

[22]  Xavier Garbet,et al.  Nonlinear three-dimensional MHD simulations of tearing modes in tokamak plasmas , 2001 .

[23]  A. Bondeson,et al.  Axisymmetric MHD equilibrium solver with bicubic Hermite elements , 1992 .

[24]  Dana A. Knoll,et al.  An Implicit, Nonlinear Reduced Resistive MHD Solver , 2002 .

[25]  Hinrich Lütjens,et al.  Saturation levels of neoclassical tearing modes in international thermonuclear experimental reactor plasmas , 2005 .

[26]  Scott Kruger,et al.  Computational modeling of fully ionized magnetized plasmas using the fluid approximation , 2005 .

[27]  L. L. Lao,et al.  Beta limits in long-pulse tokamak discharges , 1997 .

[28]  A. Bondeson,et al.  Ideal Mhd Stability of Internal Kinks in Circular and Shaped Tokamaks , 1992 .

[29]  X. Garbet,et al.  MHD stability of (2,1) tearing mode: an issue for the preforming phase of Tore Supra non-inductive discharges , 2007 .

[30]  Luis Chacon,et al.  An optimal, parallel, fully implicit Newton–Krylov solver for three-dimensional viscoresistive magnetohydrodynamicsa) , 2008 .