Evaluation of Quranic text retrieval system based on manually indexed topics

This paper investigates the effectiveness of a state of the art information retrieval (IR) system in the verse retrieval problem for Quranic text. The evaluation is based on manually indexed topics of the Quran that provides both the queries and the relevance judgments. Furthermore, the system is evaluated in both Malay and English environment. The performance of the system is measured based on the MAP, the precision at 1, 5 and 10, and the MRR scores. The results of the evaluation are promising, showing the IR system has many potential for the Quranic text retrieval.

[1]  Stephen P. Harter,et al.  A probabilistic approach to automatic keyword indexing , 1974 .

[2]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[3]  Rabiah Abdul Kadir,et al.  A review on the cross-lingual information retrieval , 2010, 2010 International Conference on Information Retrieval & Knowledge Management (CAMP).

[4]  K. Sparck Jones,et al.  INFORMATION RETRIEVAL TEST COLLECTIONS , 1976 .

[5]  Mark Sanderson,et al.  Keep It Simple Sheffield - A KISS Approach to the Arabic Track , 2001, TREC.

[6]  Tengku Mohd Tengku Sembok,et al.  Experiments with a stemming algorithm for Malay words , 1996 .

[7]  Zainab Abu Bakar,et al.  TERMS VISUAUZATION FOR MALAY TRANSLATED QURAN DOCUMENT , 2007 .

[8]  Mohammed Yusoff,et al.  Experiments with a Stemming Algorithm for Malay Words , 1996, J. Am. Soc. Inf. Sci..

[9]  Zainab Abu Bakar,et al.  An evaluation of retrieval effectiveness using spelling-correction and string-similarity matching methods on Malay texts , 2000, J. Am. Soc. Inf. Sci..

[10]  Roziati Zainuddin,et al.  Visualization Systems Supporting the Reading of Arabic Document for non Arabic Speakers , 2009 .

[11]  Craig MacDonald,et al.  Terrier Information Retrieval Platform , 2005, ECIR.

[12]  Zainab Abu Bakar,et al.  Evaluating the Effectiveness of Thesaurus and Stemming Methods in Retrieving Malay Translated Al-Quran Documents , 2003, ICADL.

[13]  David A. Hull Xerox TREC-8 Question Answering Track Report , 1999, TREC.

[14]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[15]  Steve Renals,et al.  Proceedings of the Ninth Text REtrieval Conference , 2001 .

[16]  Iadh Ounis,et al.  Research directions in Terrier: a search engine for advanced retrieval on the Web , 2007 .

[17]  Aida Mustapha Dialogue-based visualization for quranic text , 2009 .

[18]  Ben He,et al.  Terrier : A High Performance and Scalable Information Retrieval Platform , 2022 .

[19]  I. C. Mogotsi,et al.  Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze: Introduction to information retrieval , 2010, Information Retrieval.