Deep-subwavelength plasmonic nanoresonators exploiting extreme coupling.

A metal-insulator-metal (MIM) waveguide is a canonical structure used in many functional plasmonic devices. Recently, research on nanoresonantors made from finite, that is, truncated, MIM waveguides attracted a considerable deal of interest motivated by the promise for many applications. However, most suggested nanoresonators do not reach a deep-subwavelength domain. With ordinary fabrication techniques the dielectric spacers usually remain fairly thick, that is, in the order of tens of nanometers. This prevents the wavevector of the guided surface plasmon polariton to strongly deviate from the light line. Here, we will show that the exploitation of an extreme coupling regime, which appears for only a few nanometers thick dielectric spacer, can lift this limitation. By taking advantage of atomic layer deposition we fabricated and characterized exemplarily deep-subwavelength perfect absorbers. Our results are fully supported by numerical simulations and analytical considerations. Our work provides impetus on many fields of nanoscience and will foster various applications in high-impact areas such as metamaterials, light harvesting, and sensing or the fabrication of quantum-plasmonic devices.

[1]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[2]  Javier Aizpurua,et al.  Mapping the plasmon resonances of metallic nanoantennas. , 2008, Nano letters.

[3]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[4]  David R. Smith,et al.  Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. , 2008, Nano letters.

[5]  Ming C. Wu,et al.  Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper , 2012, Nature Photonics.

[6]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[7]  Reuven Gordon,et al.  Light in a subwavelength slit in a metal: Propagation and reflection , 2006 .

[8]  H. Miyazaki,et al.  Metal-insulator-metal plasmon nanocavities: Analysis of optical properties , 2007 .

[9]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[10]  L. Novotný,et al.  Antennas for light , 2011 .

[11]  K. Vahala,et al.  Observation of strong coupling between one atom and a monolithic microresonator , 2006, Nature.

[12]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[13]  Carsten Rockstuhl,et al.  Relating localized nanoparticle resonances to an associated antenna problem , 2010, 1010.2972.

[14]  Jeremy J. Baumberg,et al.  Omnidirectional absorption in nanostructured metal surfaces , 2008 .

[15]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[16]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[17]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[18]  Lifeng Li,et al.  New formulation of the Fourier modal method for crossed surface-relief gratings , 1997 .

[19]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[20]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[21]  Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures , 2008, 0808.1466.

[22]  A. Polman,et al.  Ultrasmall mode volume plasmonic nanodisk resonators. , 2010, Nano letters (Print).

[23]  David J. Perreault,et al.  Resonant-cavity enhanced thermal emission , 2005 .

[24]  P. Lalanne,et al.  Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor , 2012 .

[25]  Thomas Søndergaard,et al.  General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. , 2007, Optics express.

[26]  H. Padmore,et al.  Collective behavior of impedance matched plasmonic nanocavities. , 2012, Optics express.

[27]  Yeshaiahu Fainman,et al.  Room-temperature subwavelength metallo-dielectric lasers , 2010 .

[28]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[29]  Gennady Shvets,et al.  Large-area, wide-angle, spectrally selective plasmonic absorber , 2011, 1104.3129.

[30]  J. Hao,et al.  Nearly total absorption of light and heat generation by plasmonic metamaterials , 2011 .

[31]  A. Tünnermann,et al.  Plasmonic modes of extreme subwavelength nanocavities. , 2010, Optics letters.

[32]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[33]  M. Brongersma,et al.  Metal-dielectric-metal surface plasmon-polariton resonators , 2012 .

[34]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[35]  Han-Bo-Ram Lee,et al.  Applications of atomic layer deposition to nanofabrication and emerging nanodevices , 2009 .

[36]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[37]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[38]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[39]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[40]  Xiang Zhang,et al.  Far-field measurement of ultra-small plasmonic mode volume. , 2010, Optics express.

[41]  William L. Schaich,et al.  Narrow-band, tunable infrared emission from arrays of microstrip patches , 2008 .

[42]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[43]  F. Lederer,et al.  Perfect absorbers on curved surfaces and their potential applications. , 2012, Optics express.

[44]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[45]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[46]  Carl Hägglund,et al.  Plasmonic Near-Field Absorbers for Ultrathin Solar Cells. , 2012, The journal of physical chemistry letters.

[47]  Jean-Luc Pelouard,et al.  λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. , 2011, Nano letters.

[48]  F. Lederer,et al.  Genuine effectively biaxial left-handed metamaterials due to extreme coupling. , 2012, Optics letters.

[49]  Carsten Rockstuhl,et al.  Fabry-Pérot resonances in one-dimensional plasmonic nanostructures. , 2009, Nano letters.

[50]  M. Wegener,et al.  Metamaterial metal-based bolometers , 2012, 1204.0966.

[51]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.