Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations

We introduce a proximal bundle method for the numerical minimization of a nonsmooth difference-of-convex (DC) function. Exploiting some classic ideas coming from cutting-plane approaches for the convex case, we iteratively build two separate piecewise-affine approximations of the component functions, grouping the corresponding information in two separate bundles. In the bundle of the first component, only information related to points close to the current iterate are maintained, while the second bundle only refers to a global model of the corresponding component function. We combine the two convex piecewise-affine approximations, and generate a DC piecewise-affine model, which can also be seen as the pointwise maximum of several concave piecewise-affine functions. Such a nonconvex model is locally approximated by means of an auxiliary quadratic program, whose solution is used to certify approximate criticality or to generate a descent search-direction, along with a predicted reduction, that is next explored in a line-search setting. To improve the approximation properties at points that are far from the current iterate a supplementary quadratic program is also introduced to generate an alternative more promising search-direction. We discuss the main convergence issues of the line-search based proximal bundle method, and provide computational results on a set of academic benchmark test problems.

[1]  Antonio Fuduli,et al.  A partially inexact bundle method for convex semi-infinite minmax problems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[2]  Le Thi Hoai An,et al.  The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..

[3]  Adil M. Bagirov,et al.  A heuristic algorithm for solving the minimum sum-of-squares clustering problems , 2015, J. Glob. Optim..

[4]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[5]  M. F. Monaco,et al.  Variants to the cutting plane approach for convex nondifferentiable optimization , 1992 .

[6]  Enrico Gorgone,et al.  Gradient set splitting in nonconvex nonsmooth numerical optimization , 2010, Optim. Methods Softw..

[7]  Antonio Fuduli,et al.  Minimizing Nonconvex Nonsmooth Functions via Cutting Planes and Proximity Control , 2003, SIAM J. Optim..

[8]  Adil M. Bagirov,et al.  A Method for Minimization of Quasidifferentiable Functions , 2002, Optim. Methods Softw..

[9]  Adil M. Bagirov,et al.  Codifferential method for minimizing nonsmooth DC functions , 2011, J. Glob. Optim..

[10]  Alexander S. Strekalovsky Global Optimality Conditions for Nonconvex Optimization , 1998, J. Glob. Optim..

[11]  Giovanna Miglionico,et al.  Minimizing Piecewise-Concave Functions Over Polyhedra , 2018, Math. Oper. Res..

[12]  Antoine Soubeyran,et al.  Global convergence of a proximal linearized algorithm for difference of convex functions , 2015, Optimization Letters.

[13]  Adil M. Bagirov,et al.  A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes , 2017, J. Glob. Optim..

[14]  石塚 陽,et al.  On Global Optimality Conditions for D.C. Programming Problems , 1994 .

[15]  V. N. Malozemov,et al.  ON THE THEORY OF NON-LINEAR MINIMAX PROBLEMS , 1971 .

[16]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization: Theory, Practice and Software , 2014 .

[17]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[18]  Annabella Astorino,et al.  DC models for spherical separation , 2010, J. Glob. Optim..

[19]  H. Tuy Convex analysis and global optimization , 1998 .

[20]  Antonio Fuduli,et al.  A bundle modification strategy for convex minimization , 2007, Eur. J. Oper. Res..

[21]  J.-B. Hiriart-Urruty,et al.  From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality , 1989 .

[22]  Pierre Hansen,et al.  Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming , 1992, Oper. Res..

[23]  Kaj Holmberg,et al.  A production-transportation problem with stochastic demand and concave production costs , 1999, Math. Program..

[24]  Adil M. Bagirov,et al.  Nonsmooth DC programming approach to the minimum sum-of-squares clustering problems , 2016, Pattern Recognit..

[25]  Adil M. Bagirov,et al.  Nonsmooth DC programming approach to clusterwise linear regression: optimality conditions and algorithms , 2018, Optim. Methods Softw..

[26]  R. Horst,et al.  DC Programming: Overview , 1999 .