Entropy of operators or why matrix multiplication is hard for small depth circuits

We consider unbounded fanin depth-2 circuits with arbitrary boolean functions as gates. The entropy of an operator f : {0, 1}n → {0, 1}m is defined as the logarithm of the maximum number of vectors distinguishable by at least one special subfunction of f . We prove that every depth-2 circuit for f requires at least entropy(f) wires. This generalizes and substantially simplifies the argument used by Cherukhin in 2005 to derive the highest known lower bound Ω(n) for the operator of cyclic convolutions. We then show that the multiplication of two n by n matrices over any finite field has entropy Ω(n).

[1]  Jaikumar Radhakrishnan,et al.  Bounds for Dispersers, Extractors, and Depth-Two Superconcentrators , 2000, SIAM J. Discret. Math..

[2]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[3]  Pavel Pudlák,et al.  On shifting networks , 1993, Theor. Comput. Sci..

[4]  Nader H. Bshouty A lower bound for matrix multiplication , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[5]  Victor Shoup,et al.  Lower bounds for polynomial evaluation and interpolation problems , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[6]  Vojtech Rödl,et al.  Some combinatorial-algebraic problems from complexity theory , 1994, Discret. Math..

[7]  Pavel Pudlák,et al.  Communication in bounded depth circuits , 1994, Comb..

[8]  Ran Raz,et al.  Lower bounds for matrix product, in bounded depth circuits with arbitrary gates , 2001, STOC '01.

[9]  Nicholas Pippenger,et al.  Superconcentrators of Depth 2 , 1982, J. Comput. Syst. Sci..

[10]  Noga Alon,et al.  Linear Circuits over GF(2) , 1990, SIAM J. Comput..

[11]  V. Strassen Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten , 1973 .

[12]  Avi Wigderson,et al.  Superconcentrators, generalizers and generalized connectors with limited depth , 1983, STOC.

[13]  Andrew Chi-Chih Yao,et al.  ON ACC and threshold circuits , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[14]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.