Functional Rescue of Dystrophin Deficiency in Mice Caused by Frameshift Mutations Using Campylobacter jejuni Cas9

[1]  Eunji Kim,et al.  In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni , 2017, Nature Communications.

[2]  R. David Hawkins,et al.  Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy , 2017, Nature Communications.

[3]  Jin-Soo Kim,et al.  Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells , 2016, Nature Biotechnology.

[4]  Atsushi Nakano,et al.  A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells. , 2016, Cell stem cell.

[5]  Renzhi Han,et al.  CRISPR-mediated Genome Editing Restores Dystrophin Expression and Function in mdx Mice. , 2016, Molecular therapy : the journal of the American Society of Gene Therapy.

[6]  John M. Shelton,et al.  Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy , 2016, Science.

[7]  George M. Church,et al.  In vivo gene editing in dystrophic mouse muscle and muscle stem cells , 2016, Science.

[8]  Dongsheng Duan,et al.  In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy , 2016, Science.

[9]  Jin-Soo Kim,et al.  Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq , 2016, Genome research.

[10]  B. Byrne,et al.  Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy , 2015, Annals of neurology.

[11]  Jong-il Kim,et al.  Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells , 2015, Nature Methods.

[12]  William H. Majoros,et al.  Multiplex CRISPR/Cas9-Based Genome Editing for Correction of Dystrophin Mutations that Cause Duchenne Muscular Dystrophy , 2015, Nature Communications.

[13]  William H. Majoros,et al.  Correction of Dystrophin Expression in Cells From Duchenne Muscular Dystrophy Patients Through Genomic Excision of Exon 51 by Zinc Finger Nucleases , 2014, Molecular therapy : the journal of the American Society of Gene Therapy.

[14]  Tetsushi Sakuma,et al.  Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9 , 2014, Stem cell reports.

[15]  G. Comi,et al.  Ataluren treatment of patients with nonsense mutation dystrophinopathy , 2014, Muscle & nerve.

[16]  E. Olson,et al.  Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA , 2014, Science.

[17]  Daesik Kim,et al.  Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins , 2014, Genome research.

[18]  S. Ha,et al.  Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases , 2014, Genome research.

[19]  R. Finkel,et al.  Phase 2a Study of Ataluren-Mediated Dystrophin Production in Patients with Nonsense Mutation Duchenne Muscular Dystrophy , 2013, PloS one.

[20]  Kira S. Makarova,et al.  Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems , 2013, Nucleic acids research.

[21]  Dana Carroll,et al.  Heritable Gene Knockout in Caenorhabditis elegans by Direct Injection of Cas9–sgRNA Ribonucleoproteins , 2013, Genetics.

[22]  Semyon Kruglyak,et al.  Isaac: ultra-fast whole-genome secondary analysis on Illumina sequencing platforms , 2013, Bioinform..

[23]  Rafael J. Yáñez-Muñoz,et al.  Gene correction of a duchenne muscular dystrophy mutation by meganuclease-enhanced exon knock-in. , 2013, Human gene therapy.

[24]  D. Michele,et al.  The Dystrophin-Glycoprotein Complex in the Prevention of Muscle Damage , 2011, Journal of biomedicine & biotechnology.

[25]  J. Bourke,et al.  Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study , 2011, The Lancet.

[26]  G. van Ommen,et al.  Systemic administration of PRO051 in Duchenne's muscular dystrophy. , 2011, The New England journal of medicine.

[27]  J. Mendell,et al.  Dystrophin immunity in Duchenne's muscular dystrophy. , 2010, The New England journal of medicine.

[28]  J. Rousseau,et al.  Meganucleases can restore the reading frame of a mutated dystrophin , 2010, Gene Therapy.

[29]  I. Graham,et al.  Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study , 2009, The Lancet Neurology.

[30]  G. van Ommen,et al.  Theoretic applicability of antisense‐mediated exon skipping for Duchenne muscular dystrophy mutations , 2009, Human mutation.

[31]  I. Graham,et al.  Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[32]  J. F. Wright,et al.  Manufacturing and characterizing AAV-based vectors for use in clinical studies , 2008, Gene Therapy.

[33]  J. Rabinowitz,et al.  Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[34]  Johan T den Dunnen,et al.  Local dystrophin restoration with antisense oligonucleotide PRO051. , 2007, The New England journal of medicine.

[35]  N. Bresolin,et al.  Autologous Transplantation of Muscle-Derived CD133+ Stem Cells in Duchenne Muscle Patients , 2007, Cell transplantation.

[36]  J. Bouchard,et al.  First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up , 2007, Neuromuscular Disorders.

[37]  J. Bouchard,et al.  Dystrophin Expression in Muscles of Duchenne Muscular Dystrophy Patients After High-Density Injections of Normal Myogenic Cells , 2006, Journal of neuropathology and experimental neurology.

[38]  J. Chamberlain,et al.  Gene therapy strategies for Duchenne muscular dystrophy utilizing recombinant adeno-associated virus vectors. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[39]  L. Greensmith,et al.  The effect of peripheral nerve injury on disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis , 2005, Neuroscience.

[40]  S. Harper,et al.  Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[41]  Francesco Muntoni,et al.  Dystrophin and mutations: one gene, several proteins, multiple phenotypes , 2003, The Lancet Neurology.

[42]  R. Schwartz,et al.  Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences , 1999, Nature Biotechnology.

[43]  K. Ohlendieck,et al.  Role of dystrophin isoforms and associated proteins in muscular dystrophy (review). , 1998, International journal of molecular medicine.

[44]  T. Reynolds,et al.  Identification and elimination of replication-competent adeno-associated virus (AAV) that can arise by nonhomologous recombination during AAV vector production , 1997, Journal of virology.

[45]  F. Gleason,et al.  Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA , 2014 .