New results in global stabilization for stochastic nonlinear systems

This paper presents new results on the robust global stabilization and the gain assignment problems for stochastic nonlinear systems. Three stochastic nonlinear control design schemes are developed. Furthermore, a new stochastic gain assignment method is developed for a class of uncertain interconnected stochastic nonlinear systems. This method can be combined with the nonlinear small-gain theorem to design partial-state feedback controllers for stochastic nonlinear systems. Two numerical examples are given to illustrate the effectiveness of the proposed methodology.

[1]  Yungang Liu,et al.  Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost , 2003, IEEE Trans. Autom. Control..

[2]  Zhong-Ping Jiang,et al.  Nonlinear Control of Dynamic Networks , 2014 .

[3]  Z. Artstein Stabilization with relaxed controls , 1983 .

[4]  Miroslav Krstic,et al.  Stabilization of Nonlinear Uncertain Systems , 1998 .

[5]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[6]  Yu Jiang,et al.  Robust Adaptive Dynamic Programming and Feedback Stabilization of Nonlinear Systems , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[7]  Zhong-Ping Jiang,et al.  A Small-Gain Approach to Robust Event-Triggered Control of Nonlinear Systems , 2015, IEEE Transactions on Automatic Control.

[8]  Miroslav Krstic,et al.  Stabilization of stochastic nonlinear systems driven by noise of unknown covariance , 2001, IEEE Trans. Autom. Control..

[9]  Eduardo Sontag Further facts about input to state stabilization , 1990 .

[10]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[11]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[12]  Eduardo D. Sontag,et al.  Stability certification of large scale stochastic systems using dissipativity , 2012, Autom..

[13]  Iasson Karafyllis,et al.  Stability and Stabilization of Nonlinear Systems , 2011 .

[14]  Zhong-Ping Jiang,et al.  Decentralized Adaptive Optimal Control of Large-Scale Systems With Application to Power Systems , 2015, IEEE Transactions on Industrial Electronics.

[15]  Xuerong Mao,et al.  Stochastic Versions of the LaSalle Theorem , 1999 .

[16]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[17]  Xue-Jun Xie,et al.  Adaptive backstepping controller design using stochastic small-gain theorem , 2007, Autom..

[18]  Hiroshi Ito,et al.  Stochastic robustness of interconnected nonlinear systems in an iISS framework , 2014, 2014 American Control Conference.

[19]  T. Başar,et al.  Stochastic stability of singularly perturbed nonlinear systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[20]  Zhong-Ping Jiang,et al.  Adaptive dynamic programming and optimal control of nonlinear nonaffine systems , 2014, Autom..

[21]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[22]  P. Florchinger Feedback Stabilization of Affine in the Control Stochastic Differential Systems by the Control Lyapunov Function Method , 1997 .

[23]  D. Williams STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .

[24]  P. Florchinger A universal formula for the stabilization of control stochastic differential equations , 1993 .

[25]  H. Kushner Stochastic Stability and Control , 2012 .

[26]  Ruth J. Williams,et al.  Stabilization of stochastic nonlinear systems driven by noise of unknown covariance , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[27]  Daizhan Cheng,et al.  Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method , 2002, Autom..

[28]  S. Schaal The Computational Neurobiology of Reaching and Pointing — A Foundation for Motor Learning by Reza Shadmehr and Steven P. Wise , 2007 .

[29]  Eduardo D. Sontag,et al.  On the Input-to-State Stability Property , 1995, Eur. J. Control.

[30]  Zhong-Ping Jiang,et al.  Robust adaptive dynamic programming for optimal nonlinear control design , 2013, 2013 9th Asian Control Conference (ASCC).

[31]  Jorge Cortés,et al.  pth Moment Noise-to-State Stability of Stochastic Differential Equations with Persistent Noise , 2014, SIAM J. Control. Optim..

[32]  Zhong-Ping Jiang,et al.  Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems , 2007, Autom..

[33]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[34]  Zhong-Ping Jiang,et al.  A small-gain control method for nonlinear cascaded systems with dynamic uncertainties , 1997, IEEE Trans. Autom. Control..

[35]  Zhong-Ping Jiang,et al.  Event-based control of nonlinear systems with partial state and output feedback , 2015, Autom..

[36]  A. Isidori Nonlinear Control Systems , 1985 .

[37]  João Pedro Hespanha,et al.  A Converse Lyapunov Theorem and Robustness for Asymptotic Stability in Probability , 2014, IEEE Transactions on Automatic Control.

[38]  Daizhan Cheng,et al.  Nonlinear decentralized saturated controller design for power systems , 2003, IEEE Trans. Control. Syst. Technol..

[39]  Zhong-Ping Jiang,et al.  Robust adaptive dynamic programming for continuous-time linear stochastic systems , 2014, 2014 IEEE International Symposium on Intelligent Control (ISIC).

[40]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[41]  Pravin Varaiya,et al.  Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .

[42]  João Pedro Hespanha,et al.  Equivalent Characterizations of Input-to-State Stability for Stochastic Discrete-Time Systems , 2014, IEEE Transactions on Automatic Control.

[43]  J. Tsinias Stochastic input-to-state stability and applications to global feedback stabilization , 1998 .

[44]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[45]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[46]  Jan C. Willems,et al.  Feedback stabilizability for stochastic systems with state and control dependent noise , 1976, Autom..

[47]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.