Luminescence and Scintillation Properties at the Nanoscale

This contribution is a review of the luminescence and scintillation properties of nanoparticles (NP), particularly doped insulators. Luminescence spectroscopy is an appropriate tool to probe matter at the nanoscale. Luminescence is also the last stage of the scintillation process. Specific surface and structural effects occurring in NP are reported. Their consequences on the NP luminescence properties are discussed. Parts of the effects are related to the preparation method. On the other hand some intrinsic properties of the nanostructures which can modify the optical properties are described: quantum confinement and dielectric confinement. The response under high-energy excitation is also discussed. It appears that their size can be used as a tool to describe the spatial distribution of electronic excitations induced by the relaxation process after the high-energy excitation. Finally, potentiality to grow transparent bulk materials based on small Nps agglomeration via soft chemistry route is presented. It is a promising approach toward the development of scintillating materials.

[1]  O. Marty,et al.  Critical dimension where the macroscopic definition of refractive index can be applied at a nanometric scale , 2008 .

[2]  F. Trani,et al.  Tight-binding formulation of the dielectric response in semiconductor nanocrystals , 2007, 0705.2163.

[3]  Volker Lehmann,et al.  Porous silicon formation: A quantum wire effect , 1991 .

[4]  B. Kukliński,et al.  Pressure and temperature dependence of the emission in BaF2:Eu and SrF2:Eu , 2008 .

[5]  G. W. Ludwig X‐Ray Efficiency of Powder Phosphors , 1971 .

[6]  W. Stręk,et al.  Spectroscopy of Eu-doped Lu2O3-based X-ray phosphor , 2002 .

[7]  Robert M Dickson,et al.  Highly fluorescent noble-metal quantum dots. , 2007, Annual review of physical chemistry.

[8]  Friesner,et al.  Exciton spectra of semiconductor clusters. , 1991, Physical review letters.

[9]  Igor Nabiev,et al.  Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids , 2002 .

[10]  A. Vasil’ev,et al.  X-ray excitation of luminescence of scintillator materials in the 7-22 keV region , 1995 .

[11]  Allan,et al.  Theoretical aspects of the luminescence of porous silicon. , 1993, Physical review. B, Condensed matter.

[12]  E. Mckigney,et al.  Science and Application of Oxyorthosilicate Nanophosphors , 2008, IEEE Transactions on Nuclear Science.

[13]  Robert W. Boyd,et al.  Influence of local-field effects on the radiative lifetime of liquid suspensions of Nd:YAG nanoparticles , 2007 .

[14]  R. Meltzer,et al.  Pressure-induced dark-to-bright transition in Lu 2 O 3 :Ce 3+ , 2002 .

[15]  S. Wuister,et al.  Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media. , 2004, The Journal of chemical physics.

[16]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[17]  Hajime Yamamoto,et al.  Fundamentals of Phosphors , 2006 .

[18]  Wilfried van Sark,et al.  Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots , 2002 .

[19]  A. Vasil’ev,et al.  Time-resolved luminescence of CeF3 crystals excited by X-ray synchrotron radiation , 1993 .

[20]  A. Vasil’ev,et al.  Luminescence quenching as a probe for the local density of electronic excitations in insulators , 1996 .

[21]  M. Schwartzkopff,et al.  BREAKDOWN OF THE K-CONSERVATION RULE IN SI NANOCRYSTALS , 1998 .

[22]  A. Lempicki,et al.  Hole traps in Lu2O3:Eu ceramic scintillators. I. Persistent afterglow , 2004 .

[23]  W. Stręk,et al.  Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic , 2008 .

[24]  H. Hahn,et al.  Local structure in nanocrystalline ZrO2 and Y2O3 by EXAFS , 1997 .

[25]  James R. Chelikowsky,et al.  Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .

[26]  C. Kittel Introduction to solid state physics , 1954 .

[27]  G. Patriarche,et al.  Synthesis and optical characterizations of undoped and rare-earth-doped CaF2 nanoparticles , 2006 .

[28]  Thierry Gacoin,et al.  Optical properties of dye molecules as a function of the surrounding dielectric medium , 1999 .

[29]  Horace Lamb,et al.  On the Vibrations of an Elastic Sphere , 1881 .

[30]  M. F. Reid,et al.  Local field effects on the radiative lifetime of emitters in surrounding media: Virtual- or real-cavity model? , 2005, cond-mat/0505587.

[31]  M. Meneses-Nava,et al.  Preparation, photo- and thermo-luminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to UV-irradiation , 2004 .

[32]  A. Joly,et al.  Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation , 2008 .

[33]  Pieter Dorenbos,et al.  Energy Loss in Inorganic Scintillators , 1995 .

[34]  J. Boilot,et al.  Emission Processes in YVO4:Eu Nanoparticles , 2003 .

[35]  X. Y. Chen,et al.  Confinement of electron-phonon interaction on luminescence dynamics in nanophosphors of Er3+ :Y2O2S , 2003 .

[36]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[37]  M. Kovalenko,et al.  Quantum confinement in layer-by-layer deposited colloidal HgTe nanocrystals determined by spectroscopic ellipsometry , 2007 .

[38]  C. Martinet,et al.  Optical, structural and fluorescence properties of nanocrystalline cubic or monoclinic Eu:Lu2O3 films prepared by pulsed laser deposition , 2007 .

[39]  W. Moses,et al.  Scintillation Properties of SrHfO $_{3}$ :Ce $^{3+}$ and BaHfO $_{3}$ :Ce $^{3+}$ Ceramics , 2007 .

[40]  Jung‐Kun Lee,et al.  Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y2SiO5:Ce nanophosphors , 2006 .

[41]  P. Mélinon,et al.  Quantum confinement effect on Gd2O3 clusters. , 2007, The Journal of chemical physics.

[42]  O. Tillement,et al.  Evaluation of Fiber-Shaped LYSO for Double Readout Gamma Photon Detection , 2007, IEEE Transactions on Nuclear Science.

[43]  Friedrich Huisken,et al.  Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement , 2002 .

[44]  D. P. Fromm,et al.  Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior , 2000 .

[45]  Huihui Dong,et al.  Null‐Scattering Hybrid Particles Using Controlled Radical Polymerization , 2007 .

[46]  George A. Bray,et al.  A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter , 1960 .

[47]  R. Meltzer,et al.  Dependence of fluorescence lifetimes of Y2O3 : Eu3+ nanoparticles on the surrounding medium , 1999 .

[48]  A. Kunz,et al.  Extreme-Ultraviolet Spectra of Ionic Crystals , 1970 .

[49]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[50]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[51]  C. Esnouf,et al.  Structural transition in rare earth oxide clusters. , 2006, The Journal of chemical physics.

[52]  Friedrich Huisken,et al.  Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals , 1999 .

[53]  R. Hodel,et al.  X-ray excited luminescence and local structures in Tb-doped Y2O3 nanocrystals , 1998 .

[54]  B. Satpati,et al.  Understanding the quantum size effects in ZnO nanocrystals , 2004 .

[55]  P. Perriat,et al.  Synthesis and optical characterization of Gd2O3:Eu3+ nanocrystals: surface states and VUV excitation , 2004 .

[56]  F. Kruis,et al.  Effective mass approximation for two extreme semiconductors: Band gap of PbS and CuBr nanoparticles , 2004 .

[57]  J. Boilot,et al.  New transparent chalcogenide materials using a sol-gel process , 1997 .

[58]  S. Shmurak,et al.  Advantages and Problems of Nanocrystalline Scintillators , 2008, IEEE Transactions on Nuclear Science.

[59]  S. Sarkar,et al.  Further results on cerium fluoride crystals , 1993 .

[60]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[61]  Stuart R. Miller,et al.  A new lutetia-based ceramic scintillator for X-ray imaging , 2002 .

[62]  P. Perriat,et al.  Preparing nanometer scaled Tb-doped Y2O3 luminescent powders by the polyol method , 2005 .

[63]  B. Tissue,et al.  Lanthanide Luminescence as a Probe of Nanocrystalline Materials , 1998, Journal of Fluorescence.

[64]  G. Bizarri,et al.  An analytical model of nonproportional scintillator light yield in terms of recombination rates , 2009 .

[65]  Friedrich Huisken,et al.  Ellipsometric study of silicon nanocrystal optical constants , 2003 .

[66]  E. Hell,et al.  Novel X-ray detectors for medical imaging , 1999 .

[67]  J. Glodo,et al.  A Ceramic Version of the LSO Scintillator , 2008, IEEE Transactions on Nuclear Science.

[68]  L. Fu,et al.  Spectral Band Shifts in the Electronic Spectra of Rare Earth Sesquioxide Nanomaterials Doped with Europium , 2009 .

[69]  Mártin,et al.  Experimental study of the excitation threshold of fast intrinsic luminescence of CsI. , 1994, Physical review. B, Condensed matter.

[70]  P. Perriat,et al.  Observation of the gap blueshift on Gd2O3:Eu3+ nanoparticles , 2004 .

[71]  R. B. Murray,et al.  Scintillation Response of Activated Inorganic Crystals to Various Charged Particles , 1961 .

[72]  David E. Aspnes,et al.  Local‐field effects and effective‐medium theory: A microscopic perspective , 1982 .

[73]  William W. Moses,et al.  Current trends in scintillator detectors and materials , 2002 .

[74]  R. Friesner,et al.  Quantum confinement effects in semiconductor clusters , 1991 .

[75]  F. Huisken,et al.  Effect of passivation and aging on the photoluminescence of silicon nanocrystals , 2001 .