On the first-order expressibility of lattice properties related to unicoherence in continua

Many properties of compacta have “textbook” definitions which are phrased in lattice-theoretic terms that, ostensibly, apply only to the full closed-set lattice of a space. We provide a simple criterion for identifying such definitions that may be paraphrased in terms that apply to all lattice bases of the space, thereby making model-theoretic tools available to study the defined properties. In this note we are primarily interested in properties of continua related to unicoherence; i.e., properties that speak to the existence of “holes” in a continuum and in certain of its subcontinua.