High accuracy spline interpolation for 5-axis machining

Abstract This article presents a new algorithm for simultaneous 5-axis spline interpolation. The algorithm basically merges two concepts: (1) the interpolation of the toolpath with Pythagorean Hodograph (PH) curves and (2) the analytic solution of the inverse kinematic problem using the template equation method. The first method allows one to obtain a analytic relation between the arclength and the parameter of the toolpath curve. This one enables one to control the velocity of the tool on the workpiece. The second method allows one to determine the analytic solution of the parameterized inverse kinematic problem that permits us to introduce arbitrary number of geometric parameters. A natural selection of the possible parameters can be the parameters of tool geometry and the workpiece placement. This way, the off-line generated inverse solutions—that transform the cutter contact curve into axis values—can be online compensated, as soon as the exact parameter values are become known. Based on these two approaches, a robust and fast method for the simultaneous 5-axis spline interpolation is developed. The result of this new algorithm is time-dependent axis splines which represent the given toolpath with high accuracy.

[1]  Jui-Jen Chou,et al.  Command Generation for Three-Axis CNC Machining , 1991 .

[2]  C. A. Neff,et al.  Hermite interpolation by Pythagorean hodograph quintics , 1995 .

[3]  Rida T. Farouki,et al.  G codes for the specification of Pythagorean-hodograph tool paths and associated feedrate functions on open-architecture CNC machines , 1999 .

[4]  James T. Cain,et al.  Symbolic computation of robot manipulator kinematics , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[5]  Daniel C. H. Yang,et al.  Parametric interpolator versus linear interpolator for precision CNC machining , 1994, Comput. Aided Des..

[6]  Allan D. Spence,et al.  A constant feed and reduced angular acceleration interpolation algorithm for multi-axis machining , 2001, Comput. Aided Des..

[7]  R. Paul,et al.  Kinematic control equations for simple manipulators , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[8]  Jadran Lenarčič,et al.  Advances in Robot Kinematics , 2000 .

[9]  C. Morlec,et al.  Application of uniform cubic B-spline curves to machine-tool control , 1991, J. Intell. Robotic Syst..

[10]  T. Sakkalis,et al.  Pythagorean hodographs , 1990 .

[11]  Gerald Farin,et al.  Curves and surfaces for cagd , 1992 .

[12]  Yoram Koren,et al.  CNC INTERPOLATORS: ALGORITHMS AND ANALYSIS , 1993 .

[13]  Jui-Jen Chou,et al.  Automatic Generation of Piecewise Constant Speed Motion with Smooth Transition for Multi-Axis Machines , 1994 .

[14]  Radha Sarma,et al.  Discretizors and Interpolators for Five-Axis CNC Machines , 1998, Dynamic Systems and Control.

[15]  Yusuf Altintas,et al.  High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation , 2001 .

[16]  Fu-Chung Wang,et al.  Open Architecture Controllers for Machine Tools, Part 2: A Real Time Quintic Spline Interpolator , 1998 .

[17]  Yan Li,et al.  Optimal circular arc interpolation for NC tool path generation in curve contour manufacturing , 1997, Comput. Aided Des..

[18]  N. Quan,et al.  Spline interpolation technique for NC machines , 1992 .

[19]  Friedrich M. Wahl,et al.  Fast symbolic computation of the inverse kinematics of robots , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[20]  Rida T. Farouki,et al.  Contour machining of free-form surfaces with real-time PH curve CNC interpolators , 1999, Comput. Aided Geom. Des..

[21]  Dan Halperin,et al.  Automatic Kinematic Modelling of Robot Manipulators and Symbolic Generation of their Inverse Kinematics Solutions , 1991 .

[22]  Rida T. Farouki,et al.  Real-time CNC interpolators for Pythagorean-hodograph curves , 1996, Comput. Aided Geom. Des..

[23]  Matthias Müller A new approach for trajectory generation in 5-axis machining , 2002 .

[24]  Takis Sakkalis,et al.  Pythagorean-hodograph space curves , 1994, Adv. Comput. Math..

[25]  Yoram Koren Interpolator for a Computer Numerical Control System , 1976, IEEE Transactions on Computers.

[26]  D. C. H. Yang,et al.  Nearly arc-length parameterized quintic-spline interpolation for precision machining , 1993, Comput. Aided Des..

[27]  Rida T. Farouki,et al.  Variable-feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves , 1998, Comput. Aided Des..

[28]  Moshe Shpitalni,et al.  Realtime curve interpolators , 1994, Comput. Aided Des..

[29]  I. Ali,et al.  Advanced Interpolation Techniques for N.C. Machines , 1993 .

[30]  Syh-Shiuh Yeh,et al.  The speed-controlled interpolator for machining parametric curves , 1999, Comput. Aided Des..

[31]  Rida T. Farouki,et al.  Physical constraints on feedrates, feed accelerations along curved tool paths , 2000, Comput. Aided Geom. Des..

[32]  H. Rieseler,et al.  Symbolic Computation of Closed Form Solutions with Prototype Equations , 1991 .

[33]  Claire Lartigue,et al.  CNC tool path in terms of B-spline curves , 2001, Comput. Aided Des..

[34]  Control Division,et al.  Proceedings of the ASME Dynamic Systems and Control Division , 1996 .

[35]  R. Paul Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .