Gradient Index Metasurface Lens for Microwave Imaging

This paper presents the design, simulation and experimental validation of a gradient-index (GRIN) metasurface lens operating at 8 GHz for microwave imaging applications. The unit cell of the metasurface consists of an electric-LC (ELC) resonator. The effective refractive index of the metasurface is controlled by varying the capacitive gap at the center of the unit cell. This allows the design of a gradient index surface. A one-dimensional gradient index lens is designed and tested at first to describe the operational principle of such lenses. The design methodology is extended to a 2D gradient index lens for its potential application as a microwave imaging device. The metasurface lenses are designed and analyzed using full-wave finite element (FEM) solver. The proposed 2D lens has an aperture of size 119 mm (3.17λ) × 119 mm (3.17λ) and thickness of only 0.6 mm (0.016λ). Horn antenna is used as source of plane waves incident on the lens to evaluate the focusing performance. Field distributions of the theoretical designs and fabricated lenses are analyzed and are shown to be in good agreement. A microwave nondestructive evaluation (NDE) experiment is performed with the 2D prototype lens to image a machined groove in a Teflon sample placed at the focal plane of the lens.

[1]  L. Udpa,et al.  Subwavelength Microwave Imaging System using a Negative Index Metamaterial Lens , 2022, ASNT 30th Research Symposium Conference Proceedings.

[2]  Lalita Udpa,et al.  Negative Index Metamaterial Lens for Subwavelength Microwave Detection , 2021, Sensors.

[3]  T. Cui,et al.  Metamaterial Lenses and Their Applications at Microwave Frequencies , 2021, Advanced Photonics Research.

[4]  Sangjo Choi,et al.  Compact Double-Layer FR4-Based Focusing Lens Using High-Efficiency Huygens’ Metasurface Unit Cells , 2020, Sensors.

[5]  Elham Erfani,et al.  A High-Gain Broadband Gradient Refractive Index Metasurface Lens Antenna , 2016, IEEE Transactions on Antennas and Propagation.

[6]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[7]  J. Rho,et al.  Metamaterials and imaging , 2015, Nano Convergence.

[8]  Ho-Jin Song,et al.  Laminated metamaterial flat lens at millimeter-wave frequencies. , 2015, Optics express.

[9]  Vibha Rani Gupta,et al.  A design rule for an ELC resonator , 2015, 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS).

[10]  T. Cui,et al.  Surface Fourier-transform lens using a metasurface , 2015 .

[11]  Zhi-Gang Yu,et al.  Generalized effective-medium theory for metamaterials , 2014, 1402.0552.

[12]  A. Petosa,et al.  Research and Development on Phase-Shifting Surfaces (PSSs) , 2013, IEEE Antennas and Propagation Magazine.

[13]  J. W. Allen,et al.  Design and fabrication of an RF GRIN lens using 3D printing technology , 2013, Photonics West - Optoelectronic Materials and Devices.

[14]  Arnan Mitchell,et al.  Pneumatically switchable graded index metamaterial lens , 2013 .

[15]  H. Ma,et al.  Three-Dimensional Gradient-Index Materials and Their Applications in Microwave Lens Antennas , 2013, IEEE Transactions on Antennas and Propagation.

[16]  N. Zheludev,et al.  Sub-wavelength focusing meta-lens. , 2012, Optics express.

[17]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[18]  C. Holloway,et al.  Characterizing Metasurfaces/Metafilms: The Connection Between Surface Susceptibilities and Effective Material Properties , 2011, IEEE Antennas and Wireless Propagation Letters.

[19]  Changbao Ma,et al.  Extraordinary light focusing and Fourier transform properties of gradient-index metalenses , 2011 .

[20]  A. Alú First-principles homogenization theory for periodic metamaterials , 2010, 1012.1351.

[21]  K. Aydin,et al.  Super-resolution imaging by one-dimensional, microwave left-handed metamaterials with an effective negative index , 2008 .

[22]  Ekaterina Shamonina,et al.  Metamaterials: How the subject started , 2007 .

[23]  Willie J. Padilla,et al.  Electrically resonant terahertz metamaterials: Theoretical and experimental investigations , 2007 .

[24]  D. Smith,et al.  Characterization of a planar artificial magnetic metamaterial surface. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  David R. Smith,et al.  Electric-field-coupled resonators for negative permittivity metamaterials , 2006 .

[26]  D. Smith,et al.  Gradient index metamaterials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[28]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[29]  M. Rosenbluth,et al.  Limitations on subdiffraction imaging with a negative refractive index slab , 2002, cond-mat/0206568.

[30]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[31]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[32]  K. A. Jose,et al.  Microwave characterization of dielectric materials from 8 to 110 GHz using a free‐space setup , 2000 .

[33]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[34]  K. A. Jose,et al.  In situ microwave characterization of nonplanar dielectric objects , 2000 .

[35]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[36]  Gabriel M. Rebeiz,et al.  A W-band dielectric-lens-based integrated monopulse radar receiver , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[37]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[38]  A. J. Bahr,et al.  Experimental Techniques in Microwave NDE , 1995 .

[39]  S. Bakhtiari,et al.  Millimeter-wave imaging for nondestructive evaluation of materials , 1994 .

[40]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[41]  C. Stephanis,et al.  Imaging with microwave lens , 1980 .

[42]  E. W. Marchand Third-order aberrations of the photographic Wood lens , 1976 .

[43]  John N. Buthers Engineering Applications of Lasers and Holography , 1976 .

[44]  W. E. Kock Microwave Holography , 1970 .

[45]  J. Goodman Introduction to Fourier optics , 1969 .

[46]  G. T. Holmes,et al.  Microwave luneburg lens. , 1968, Applied optics.

[47]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[48]  L. Peters,et al.  Range requirements in radar cross-section measurements , 1965 .

[49]  W. Rotman,et al.  Wide-angle microwave lens for line source applications , 1963 .

[50]  K. Miyamoto The Phase Fresnel Lens , 1961 .

[51]  G. Peeler,et al.  A two-dimensional microwave luneberg lens , 1953 .

[52]  W. E. Kock,et al.  Metallic delay lenses , 1948, Bell Syst. Tech. J..

[53]  W. E. Kock,et al.  Metal-Lens Antennas , 1946, Proceedings of the IRE.

[54]  F. G. Friedlander A dielectric-lens aerial for wide-angle beam scanning , 1946 .

[55]  W. PEDDIE,et al.  The Scientific Papers of James Clerk Maxwell , 1927, Nature.