as Serotonin Transporter Radioligands Under Various Experimental Conditions

There has been considerable interest in the development of a PET radioligand selective for the serotonin (5-hydroxytryptamine [5-HT]) transporter (SERT) that can be used to image 5-HT neurons in the living human brain. The most widely used SERT radiotracer to date, trans-1,2,3,5,6,10--hexahydro-6-[4-(methylthio)phenyl[pyrrolo-[2,1-a]isoquinoline (()-11C-McN5652), has been successful in this regard but may have some limitations. Recently, another promising SERT radiotracer, 3- 11 Camino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile ( 11 C-DASB), has been described. The purpose of this study was to compare and contrast ()- 11 C-McN5652 and 11 C-DASB under various experimental conditions. Methods: Radioligand comparisons were performed in a control baboon, a baboon with reduced SERT density (()-3,4-methylenedioxymethamphetamine [MDMA] lesion), and a baboon with reduced SERT availability (paroxetine pretreatment). Under each of these experimental conditions, repeated (triplicate) PET studies were performed with each ligand. Results: Both radiotracers bound preferentially in brain regions known to contain high SERT density. For both ligands, there was a high correlation between the amount of regional brain ligand binding and the known regional brain concentration of SERT. Binding of both ligands was decreased after MDMA neurotoxicity (reduced SERT density), and ()- 11 C-McN5652 and 11 C-DASB were comparably effective in detecting reduced SERT density after MDMA-induced 5-HT neurotoxicity. Pretreatment with paroxetine dramatically altered the metabolism and kinetics of both tracers and appeared to displace both ligands primarily from regions with high SERT density. Compared with ()-11C-McN5652, 11C-DASB had higher brain activity and a faster washout rate and provided greater contrast between subcortical and cortical brain regions. Conclusion: 11C-DASB and ()-11C-McN5652 are suitable as PET ligands of the SERT and for detecting MDMA-induced 5-HT neurotoxicity. 11C-DASB may offer some advantages. Additional studies are needed to further characterize the properties and capabilities of both ligands in health and disease.

[1]  Simon M. Ametamey,et al.  Evaluation of Serotonergic Transporters using PET and [11C](+)McN-5652: Assessment of Methods , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  P. Acton,et al.  2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM): an improved serotonin transporter ligand. , 2000, Nuclear medicine and biology.

[3]  Zsolt Szabo,et al.  Positron emission tomography imaging of serotonin transporters in the human brain using [11C](+)McN5652 , 1995, Synapse.

[4]  G. Ricaurte,et al.  Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[6]  D. Wong,et al.  Column-switching HPLC for the analysis of plasma in PET imaging studies. , 2000, Nuclear medicine and biology.

[7]  H N Wagner,et al.  Positron Emission Tomography of 5-HT Transporter Sites in the Baboon Brain with [11C]McN5652 , 1995, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  J. Mazziotta,et al.  Rapid Automated Algorithm for Aligning and Reslicing PET Images , 1992, Journal of computer assisted tomography.

[9]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[10]  Russ Rew,et al.  NetCDF: an interface for scientific data access , 1990, IEEE Computer Graphics and Applications.

[11]  O Muzik,et al.  Analysis of [C-11]Alpha-Methyl-Tryptophan Kinetics for the Estimation of Serotonin Synthesis Rate In Vivo , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  Alan A. Wilson,et al.  Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [(11)C]DASB PET imaging study. , 2001, The American journal of psychiatry.

[13]  Z. Szabo,et al.  In vivo detection of short‐ and long‐term MDMA neurotoxicity—a positron emission tomography study in the living baboon brain , 1998, Synapse.

[14]  Z. Szabo,et al.  Positron emission tomographic evidence of toxic effect of MDMA (“Ecstasy”) on brain serotonin neurons in human beings , 1998, The Lancet.

[15]  D. Kupfer,et al.  Serotonin in Aging, Late-Life Depression, and Alzheimer's Disease: The Emerging Role of Functional Imaging , 1998, Neuropsychopharmacology.

[16]  M. Kraut,et al.  Kinetic Analysis of [11C]McN5652: A Serotonin Transporter Radioligand , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[17]  David J. Schlyer,et al.  Graphical Analysis of Reversible Radioligand Binding from Time—Activity Measurements Applied to [N-11C-Methyl]-(−)-Cocaine PET Studies in Human Subjects , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  T. Insel,et al.  3,4-Methylenedioxymethamphetamine ("ecstasy") selectively destroys brain serotonin terminals in rhesus monkeys. , 1989, The Journal of pharmacology and experimental therapeutics.

[19]  B. Bailey Tables of the Bonferroni t Statistic , 1977 .

[20]  J J DiStefano,et al.  Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. , 1984, The American journal of physiology.

[21]  G. Ricaurte,et al.  Altered Serotonin Innervation Patterns in the Forebrain of Monkeys Treated with (±)3,4-Methylenedioxymethamphetamine Seven Years Previously: Factors Influencing Abnormal Recovery , 1999, The Journal of Neuroscience.

[22]  R. Dannals,et al.  Synthesis of a radiotracer for studying serotonin uptake sites with positron emission tomography : [11C]McN-5652-Z , 1992 .

[23]  J. Palacios,et al.  Autoradiography of antidepressant binding sites in the human brain: localization using [3h]imipramine and [3h]paroxetine , 1988, Neuroscience.

[24]  Sylvain Houle,et al.  Radiosynthesis of carbon‐11 labelled N‐methyl‐2‐(arylthio)benzylamines: potential radiotracers for the serotonin reuptake receptor , 1999 .

[25]  Alan A. Wilson,et al.  Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB , 2000, European Journal of Nuclear Medicine.

[26]  W. Jagust,et al.  In vivo imaging of the 5-hydroxytryptamine reuptake site in primate brain using single photon emission computed tomography and [123I]5-iodo-6-nitroquipazine. , 1993, European journal of pharmacology.

[27]  P. Brust,et al.  Radioligands for the study of the 5-HT transporter in vivo. , 1999, IDrugs : the investigational drugs journal.

[28]  U. McCann,et al.  3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy"): pharmacology and toxicology in animals and humans. , 1994, Addiction.

[29]  J. Marcusson,et al.  High affinity [3H]paroxetine binding to serotonin uptake sites in human brain tissue , 1989, Brain Research.

[30]  M Slifstein,et al.  Validation and Reproducibility of Measurement of 5-HT1A Receptor Parameters with [carbonyl-11C]WAY-100635 in Humans: Comparison of Arterial and Reference Tissue Input Functions , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  Marc Laruelle,et al.  Regional and subcellular localization in human brain of [3H]paroxetine binding, a marker of serotonin uptake sites , 1988, Biological Psychiatry.

[32]  M Slifstein,et al.  In vivo quantification of brain serotonin transporters in humans using [11C]McN 5652. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[33]  S. Houle,et al.  Novel Radiotracers for Imaging the Serotonin Transporter by Positron Emission Tomography: Synthesis, Radiosynthesis, and in Vitro and ex Vivo Evaluation of (11)C-Labeled 2-(Phenylthio)araalkylamines. , 2000, Journal of medicinal chemistry.

[34]  G. Ricaurte,et al.  Lasting effects of (+-)-3,4-methylenedioxymethamphetamine (MDMA) on central serotonergic neurons in nonhuman primates: neurochemical observations. , 1992, The Journal of pharmacology and experimental therapeutics.

[35]  Linda Carpenter,et al.  Reduced brain serotonin transporter availability in major depression as measured by [123I]-2β-carbomethoxy-3β-(4-iodophenyl)tropane and single photon emission computed tomography , 1998, Biological Psychiatry.

[36]  Z. Szabo,et al.  Toxicodynamics and long-term toxicity of the recreational drug, 3, 4-methylenedioxymethamphetamine (MDMA, 'Ecstasy'). , 2000, Toxicology letters.