Soil nutrient stocks are maintained over multiple rotations in Brazilian Eucalyptus plantations

[1]  Robert B Jackson,et al.  Management intensification maintains wood production over multiple harvests in tropical Eucalyptus plantations. , 2019, Ecological applications : a publication of the Ecological Society of America.

[2]  K. Todd-Brown,et al.  A moisture function of soil heterotrophic respiration that incorporates microscale processes , 2018, Nature Communications.

[3]  Italo Ramos Cegatta,et al.  The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay , 2017 .

[4]  L. Martinelli,et al.  Soil phosphorus sorption capacity after three decades of intensive fertilization in Mato Grosso, Brazil , 2017 .

[5]  P. Smethurst,et al.  Modeling rhizosphere carbon and nitrogen cycling in Eucalyptus plantation soil , 2017, Biogeosciences.

[6]  P. Hinsinger,et al.  Rainfall reduction impacts rhizosphere biogeochemistry in eucalypts grown in a deep Ferralsol in Brazil , 2016, Plant and Soil.

[7]  R. Scott,et al.  Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado , 2017 .

[8]  J. L. Gava,et al.  Forest residue maintenance increased the wood productivity of a Eucalyptus plantation over two short rotations , 2016 .

[9]  H. L. Allen,et al.  Maximum response of loblolly pine plantations to silvicultural management in the southern United States , 2016 .

[10]  R. B. Jackson,et al.  Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions , 2016, Plant and Soil.

[11]  L. Martinelli,et al.  The phosphorus cost of agricultural intensification in the tropics , 2016, Nature Plants.

[12]  V. Alvarez,et al.  Produtividade de eucalipto aos 18 meses de idade, na região do Cerrado, em resposta à aplicação de cálcio, via calcário e gesso agrícola , 2016 .

[13]  Susan G. Letcher,et al.  Biomass resilience of Neotropical secondary forests , 2016, Nature.

[14]  Gregory P. Asner,et al.  Tropical soil nutrient distributions determined by biotic and hillslope processes , 2016, Biogeochemistry.

[15]  L. Rodriguez,et al.  Changes in planted forests and future global implications , 2015 .

[16]  Keith D. Shepherd,et al.  Mid‐Infrared and Total X‐Ray Fluorescence Spectroscopy Complementarity for Assessment of Soil Properties , 2015 .

[17]  M. Wingfield,et al.  Planted forest health: The need for a global strategy , 2015, Science.

[18]  D. Dragoni,et al.  Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. , 2015, The New phytologist.

[19]  S. R. Shukla,et al.  Axial variations in anatomical properties and basic density of Eucalypturograndis hybrid (Eucalyptus grandis × E. urophylla) clones , 2015, Journal of Forestry Research.

[20]  Dandan Wang,et al.  Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC) , 2015 .

[21]  T. Grove,et al.  Repeated harvest residue removal reduces E. globulus productivity in the 3rd rotation in south-western Australia. , 2014 .

[22]  D. Goodrich,et al.  Trends in water balance components across the Brazilian Cerrado , 2014 .

[23]  A. Vasconcelos Emissões de CO2 , particionamento da respiração e qualidade da matéria orgânica em solos sob cultivo de eucalipto no Cerrado , 2014 .

[24]  J. Stape,et al.  Soil carbon stocks and forest biomass following conversion of pasture to broadleaf and conifer plantations in southeastern Brazil , 2014 .

[25]  Y. Nouvellon,et al.  Effects of potassium and sodium supply on drought-adaptive mechanisms in Eucalyptus grandis plantations. , 2014, The New phytologist.

[26]  M. A. C. Matos,et al.  Chemical characteristics of rainwater at a southeastern site of Brazil , 2014 .

[27]  J. Laclau,et al.  The role of harvest residues to sustain tree growth and soil nitrogen stocks in a tropical Eucalyptus plantation , 2014, Plant and Soil.

[28]  Paulo Henrique Muller da Silva,et al.  Fertilizer management of eucalypt plantations on sandy soil in Brazil: Initial growth and nutrient cycling , 2013 .

[29]  Y. Nouvellon,et al.  Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations , 2013, Front. Plant Sci..

[30]  N. Silva Produtividade, demanda e eficiência nutricional de clones de eucalipto em regime de alto fuste e talhadia , 2013 .

[31]  Paulo Fernando Trugilho,et al.  MODELING OF BASIC DENSITY OF WOOD FROM EUCALYPTUS GRANDIS AND EUCALYPTUS UROPHYLLA USING NONDESTRUCTIVE METHODS , 2013 .

[32]  R. B. Jackson,et al.  Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America , 2012, Global change biology.

[33]  Andreas Richter,et al.  Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. , 2012, The New phytologist.

[34]  M. Tighe,et al.  Rapid, Nondestructive Total Elemental Analysis of Vertisol Soils using Portable X-ray Fluorescence , 2012 .

[35]  A. C. Gama-Rodrigues,et al.  Nitrogen balance in soil under eucalyptus plantations , 2012 .

[36]  Leonardus Vergütz Studying the soil compartment of the global carbon cycle , 2011 .

[37]  R. F. Novais,et al.  Nutrient relations during an eucalyptus cycle at different population densities , 2011 .

[38]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[39]  J. L. Carvalho,et al.  Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil , 2010 .

[40]  A. C. Gama-Rodrigues,et al.  Mineralização de nitrogênio e carbono em solos sob plantações de eucalipto, em uma sequência de idades , 2010 .

[41]  R. F. Novais,et al.  Alterations of soil chemical properties by eucalyptus cultivation in five regions in the Rio Doce Valley , 2010 .

[42]  Y. Nouvellon,et al.  Biogeochemical cycles of nutrients in tropical Eucalyptus plantations Main features shown by intensive monitoring in Congo and Brazil , 2010 .

[43]  M. G. Ryan,et al.  The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production , 2010 .

[44]  Wan-tai Yu,et al.  Effects of fertilization on nutrient budget and nitrogen use efficiency of farmland soil under different precipitations in Northeastern China , 2010, Nutrient Cycling in Agroecosystems.

[45]  R. B. Jackson,et al.  A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. , 2009, Ecological applications : a publication of the Ecological Society of America.

[46]  N. F. Barros,et al.  Estoques de carbono e nitrogênio em frações lábeis e estáveis da matéria orgânica de solos sob eucalipto, pastagem e cerrado no Vale do Jequitinhonha - MG , 2009 .

[47]  Jean Paul Metzger,et al.  The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation , 2009 .

[48]  O. Chadwick,et al.  Climate and soil-age constraints on nutrient uplift and retention by plants. , 2009, Ecology.

[49]  M. Pagano,et al.  Aboveground nutrient components of Eucalyptus camaldulensis and E. grandis in semiarid Brazil under the nature and the mycorrhizal inoculation conditions , 2009, Journal of Forestry Research.

[50]  Helio Garcia Leite,et al.  Alocação de nutrientes em plantios de eucalipto no Brasil , 2008 .

[51]  J. Laclau,et al.  Influence of land use (savanna, pasture, Eucalyptus plantations) on soil carbon and nitrogen stocks in Brazil , 2008 .

[52]  C. Bourotte,et al.  Fluxes of solute in two catchments with contrasting deposition loads in Atlantic Forest (Serra do Mar/SP-Brazil) , 2007 .

[53]  Roberto Ferreira Novais,et al.  Soil organic carbon dynamics following afforestation of degraded pastures with eucalyptus in southeastern Brazil , 2006 .

[54]  Juan F. Silva,et al.  Spatial heterogeneity, land use and conservation in the cerrado region of Brazil , 2006 .

[55]  Tsuioshi Yamada The Cerrado of Brazil: A Success Story of Production on Acid Soils , 2005 .

[56]  Y. Nouvellon,et al.  Nutrient cycling in a clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo 3. Input-output budgets and consequences for the sustainability of the plantations , 2005 .

[57]  R. B. Jackson,et al.  THE UPLIFT OF SOIL NUTRIENTS BY PLANTS: BIOGEOCHEMICAL CONSEQUENCES ACROSS SCALES , 2004 .

[58]  C. Riebe,et al.  Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes ☆ , 2004 .

[59]  Robert M. Boddey,et al.  Chemical and biological indicators of decline/degradation of Brachiaria pastures in the Brazilian Cerrado , 2004 .

[60]  M. G. Ryan,et al.  Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil , 2004 .

[61]  R. Gifford,et al.  Soil carbon stocks and land use change: a meta analysis , 2002 .

[62]  A. Aweto Impact of single species tree plantations on nutrient cycling in West Africa , 2001 .

[63]  J. Laclau,et al.  Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients. , 2001, Tree physiology.

[64]  Ary T. Oliveira-Filho,et al.  Patterns of Floristic Differentiation among Atlantic Forests in Southeastern Brazil and the Influence of Climate1 , 2000 .

[65]  Ary,et al.  Patterns of Floristic Differentiation among Atlantic Forests in Southeastern Brazil and the Influence of Climate 1 , 2000 .

[66]  Reynaldo Campos Santana Predição de biomassa e alocação de nutrientes em povoamentos de eucalipto no Brasil , 2000 .

[67]  L. Vilela,et al.  Chemical fractionation of phosphorus, sulphur, and molybdenum in Brazilian savannah Oxisols under different land use , 2000 .

[68]  W. M. Post,et al.  Soil carbon sequestration and land‐use change: processes and potential , 2000 .

[69]  R. F. Novais,et al.  Productivity of Eucalyptus camaldulensis affected by rate and placement of two phosphorus fertilizers to a Brazilian Oxisol. , 2000 .

[70]  J. Louzada,et al.  Litter decomposition in semideciduous forest and Eucalyptus spp. crop in Brazil: a comparison , 1997 .

[71]  M. Turnbull,et al.  The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis Hill ex Maiden and Eucalyptus maculata Hook. , 1995 .

[72]  A. Lugo Comparison of Tropical Tree Plantations with Secondary Forests of Similar Age , 1992 .

[73]  J. M. Bremner,et al.  A rapid and precise method for routine determination of organic carbon in soil , 1988 .

[74]  N. Hannon,et al.  Insoluble phosphorus usage by Eucalyptus , 1974, Plant and Soil.

[75]  J. Stape,et al.  Eucalyptus plantation effects on soil carbon after 20years and three rotations in Brazil , 2016 .

[76]  J. Neves,et al.  Productivity of eucalypt at 18 months of age, in Cerrado region, in response to application to application of calcium, by lime and to gypsum amendments. , 2016 .

[77]  P. Smethurst,et al.  Available Nitrogen and Responses to Nitrogen Fertilizer in Brazilian Eucalypt Plantations on Soils of Contrasting Texture , 2015 .

[78]  Steven D. Mills,et al.  Financial performance of loblolly and longleaf pine plantations , 2013 .

[79]  J. Gominho,et al.  Within-Tree Variation of Heartwood, Extractives and Wood Density in the Eucalypt Hybrid Urograndis ( Eucalyptus Grandis × E. Urophylla ) , 2001 .

[80]  D. S. Bush Calcium Regulation in Plant Cells and its Role in Signaling , 1995 .

[81]  B. J. Macauley,et al.  Eucalyptus leaf-litter decomposition: Effects of relative humidity and substrate moisture content , 1982 .